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Monitoring Data Usage in Distributed Systems
David Basin, Matúš Harvan, Felix Klaedtke, and Eugen Zălinescu

Abstract—IT systems manage increasing amounts of sensitive data and there is a growing concern that they comply with policies that
regulate data usage. In this article, we use temporal logic to express policies, and runtime monitoring to check system compliance. While
well-established methods for monitoring linearly-ordered system behavior exist, a major challenge is monitoring distributed and concurrent
systems, where actions are locally observed in the different system parts. These observations can only be partially ordered while policy
compliance may depend on the actions’ actual order of appearance. Technically speaking, it is in general intractable to check compliance of
partially ordered traces. We identify fragments of our policy specification language for which compliance can be checked efficiently, namely, by
monitoring a single representative trace in which the observed actions are totally ordered. Through a case study we show that the fragments
are capable of expressing non-trivial policies and that monitoring representative traces is feasible on real-world data.

Index Terms—Monitors, Temporal logic, Verification, Distributed Systems, Regulation
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1 Introduction

I t is a growing concern for companies, administrations,
and end users alike whether IT systems comply with

policies regulating the usage of sensitive data. Checking their
compliance is particularly acute as many of our modern
infrastructures (communication, entertainment, finance and
banking, social networks, etc.) are based on IT systems that
collect, process, and share data. Moreover, increasingly many
legal regulations mandate compliance, such as the US Health
Insurance Portability and Accountability Act (HIPAA) [2],
the Sarbanes-Oxley Act (SOX) [3], and the EU Directive
95/46/EC [4].

A prominent approach to compliance checking is run-
time monitoring. Here, system actions are observed and au-
tomatically checked for compliance against a policy. Efficient
monitoring algorithms have been given for this task for various
policy specification languages, see, for example, [5]–[10]. The
underlying semantic model of these languages is that the
observed system actions are totally ordered. However, a total
ordering is often not available. Even simple IT systems are
composed of multiple interacting subsystems, which typically
are distributed and act concurrently. Hence system actions can
only be observed locally and independently in each subsystem.
Although we have a total ordering on the actions observed
in each individual subsystem, it is unclear how to combine
them with actions observed in other subsystems. And policy
compliance may depend on how all observed actions are totally
ordered.

Synchronization of all subsystems for each observed system
action leads to a total ordering, but this is usually prohibitively
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expensive. Not requiring it leads to a partial order on the
observed actions. Determining whether at least one or whether
all possible extensions of such a partial order into a total order
violate a policy is in general an intractable problem. Intuitively,
this is because a partial ordering on a finite set has, in the
worst case, exponentially many different extensions to a total
ordering.

In this article, we identify policies for which compliance
can be checked efficiently by inspecting a single representative
sequence in which the observed system actions are totally
ordered. Furthermore, we deploy and evaluate our solution in
a real-world concurrent and distributed IT system. To explain
our approach in more detail, we continue with an abstract
description of the systems that we handle and we describe our
monitoring setup.

System Model. The types of entities in the systems that
we consider are data, (data) stores, agents, and actions. Data
is stored in distributed data stores such as databases and repos-
itories and created, read, modified, combined, propagated,
and deleted by actions initiated by agents. Agents are either
humans or applications, including database triggers, and they
do not necessarily comply with policies.

In our system model, we assume that agents always access
data directly from a store and never indirectly from another
agent. Whenever an agent wants to use some data, it accesses
the appropriate store, uses the data, and discards it afterwards.
For subsequent usage, it must access the store again. Before
discarding the data, the agent may write it, possibly after
processing it in some way, into the same or a different store.
In this way, data can propagate between stores. A consequence
of this restriction on the interaction between system entities is
that the use of data is always observable at the data stores.

Monitoring Setup. Given an instance of the above
system model, we extend it to observe system actions. We log
them locally at the data stores, annotating each action with a
timestamp. We assume that the clocks are synchronized [11]
and of limited precision (timestamps come from a non-dense
set). Hence even with clock synchronization, the timestamps
lead only to a partial ordering since actions can be logged in
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Fig. 1. System Extensions

different subsystems with equal timestamps. We pre-process
the local logs, merge them, and monitor this merged stream
of logged actions. These system extensions are depicted in
Figure 1.

To express policies, we use a metric first-order temporal
logic (MFOTL). In general, temporal logics [12] are well
suited to formalize system properties and to algorithmically
reason about system behavior. In particular, the standard tem-
poral operators allow us to naturally express temporal aspects
of data usage policies, such as whenever a user requests the
deletion of his data then the data must eventually be deleted.
Metric temporal logics [13] associate timing constraints with
temporal operators. We can thereby straightforwardly express
requirements that commonly occur in data-usage policies, for
example that data deletion must happen within 30 days. A
first-order logic allows us to formulate dependencies between
the finite but unbounded number of agents and data elements
in IT systems.

In [10] we presented a monitoring algorithm for an expres-
sive fragment of MFOTL for a totally ordered sequence of
timestamped actions and in [14] we described an implemen-
tation of this algorithm. We also showed that many policies
can naturally be expressed in a fragment of this logic, which
we can effectively monitor [15].

Summary. We identify two fragments of MFOTL that
describe policies insensitive to the ordering of actions la-
beled with equal timestamps. For policies expressed in these
fragments, it suffices to monitor a single stream of logged
actions. For the first fragment, an arbitrary interleaving can be
monitored. For the second fragment, it suffices to monitor the
collapse of an interleaving, which is where actions with equal
timestamps are merged. Both an interleaving and a collapse
can be easily obtained by merging the logs produced by the
subsystems.

The first fragment subsumes the second one in terms of
expressiveness. However, system monitoring with respect to
formulas in the second fragment is more efficient. Both
fragments are defined by labeling a formula’s atomic formulas
and using rules to propagate the labels to the formula’s root.
The labels describe semantic properties about the insensitivity
of the labeled subformula to the ordering of actions with equal
timestamps. Furthermore, we provide means to approximate
policies to fall within these fragments.

We evaluate our approach in a real-world case study,
Nokia’s Data-collection Campaign [16]. In this campaign,
sensitive data is collected by mobile phones and propagated
between databases. The underlying IT system is an instance
of our system model. For the evaluation, we extended it to
support logging and monitoring as indicated in Figure 1. We

used MFOTL to express policies and our monitoring tool [14]
for compliance checking.

Contributions. We provide a solution for efficiently
monitoring partially ordered logs, which is a central problem
in monitoring real-time concurrent distributed systems. More-
over, we demonstrate the effectiveness of our approach on a
real-world application. In particular, the two identified MFOTL
fragments are sufficiently expressive to capture real-world
policies and our monitor can efficiently check such policies
on real-world logs. Although we focus here on MFOTL as
the policy specification language and our monitor [10], [14],
the underlying principle of monitoring a single representative
to check compliance of an IT system is a general one that
applies to other policy specification languages and monitoring
algorithms.

Organization. The remainder of this article is structured
as follows. In Section 2, we provide background on MFOTL
and our monitor. In Section 3, we prove that monitoring a
partially ordered set of actions is in general intractable. In
the Sections 4 and 5, we define fragments of formulas for
which this problem can be solved efficiently. In Section 6,
we compare these fragments and explain how a policy can
be approximated by one that can be monitored efficiently.
In Section 7, we report on our case study. In Section 8, we
discuss related work and in Section 9, we draw conclusions.
Additional proof details are given in the appendix.

2 Preliminaries
We briefly review metric first-order temporal logic (MFOTL)
and our monitoring algorithm.

2.1 Metric First-order Temporal Logic

Syntax and Semantics. Let I be the set of nonempty
intervals over N. We write an interval I ∈ I as [b, b′) :=
{a ∈ N | b ≤ a < b′}, where b ∈ N, b′ ∈ N ∪ {∞}, and b < b′.
A signature S is a tuple (C,R, ι), where C is a finite set of
constant symbols, R is a finite set of predicate symbols disjoint
from C, and the function ι : R→ N associates each predicate
symbol r ∈ R with an arity ι(r) ∈ N. In the following, let
S = (C,R, ι) be a signature and V a countably infinite set of
variables, assuming V ∩ (C ∪ R) = ∅.

Formulas over the signature S are given by the grammar

φ ::= t1 ≈ t2
∣∣∣ t1 ≺ t2

∣∣∣ r(t1, . . . , tι(r))
∣∣∣ (¬φ)

∣∣∣ (φ ∨ φ)
∣∣∣ (∃x. φ)

∣∣∣
( d- I φ)

∣∣∣ ( dI φ)
∣∣∣ (φ SI φ)

∣∣∣ (φ UI φ) ,

where t1, t2, . . . range over the elements in V ∪ C, and r, x,
and I range over the elements in R, V , and I, respectively.

To define MFOTL’s semantics, we need the following no-
tions. A structure D over the signature S consists of a domain
|D| , ∅ and interpretations cD ∈ |D| and rD ⊆ |D|ι(r), for each
c ∈ C and r ∈ R. A temporal structure over S is a pair (D̄, τ̄),
where D̄ = (D0,D1, . . . ) is a sequence of structures over S
and τ̄ = (τ0, τ1, . . . ) is a sequence of natural numbers, where
the following conditions hold:
(1) The sequence τ̄ is monotonically increasing (that is, τi ≤

τi+1, for all i ≥ 0) and makes progress (that is, for every
i ≥ 0, there is some j > i such that τ j > τi).
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(D̄, τ̄, v, i) |= t ≈ t′ iff v(t) = v(t′)
(D̄, τ̄, v, i) |= t ≺ t′ iff v(t) < v(t′)
(D̄, τ̄, v, i) |= r(t1, . . . , tι(r)) iff

(
v(t1), . . . , v(tι(r))

)
∈ rDi

(D̄, τ̄, v, i) |= (¬φ) iff (D̄, τ̄, v, i) 6|= φ
(D̄, τ̄, v, i) |= (φ ∨ ψ) iff (D̄, τ̄, v, i) |= φ or (D̄, τ̄, v, i) |= ψ
(D̄, τ̄, v, i) |= (∃x. φ) iff (D̄, τ̄, v[x/d], i) |= φ, for some d ∈ |D̄|
(D̄, τ̄, v, i) |= ( c- I φ) iff i > 0, τi − τi−1 ∈ I, and (D̄, τ̄, v, i − 1) |= φ
(D̄, τ̄, v, i) |= ( cI φ) iff τi+1 − τi ∈ I and (D̄, τ̄, v, i + 1) |= φ
(D̄, τ̄, v, i) |= (φ SI ψ) iff for some j ≤ i, τi − τ j ∈ I, (D̄, τ̄, v, j) |= ψ,

and (D̄, τ̄, v, k) |= φ, for all k ∈ [ j + 1, i + 1)
(D̄, τ̄, v, i) |= (φ UI ψ) iff for some j ≥ i, τ j − τi ∈ I, (D̄, τ̄, v, j) |= ψ,

and (D̄, τ̄, v, k) |= φ, for all k ∈ [i, j)

Fig. 2. Semantics of MFOTL

(2) D̄ has constant domains, that is, |Di| = |Di+1|, for all i ≥ 0.
We denote the domain by |D̄| and require that its elements
are strictly linearly ordered by the relation <.

(3) Each constant symbol c ∈ C has a rigid interpretation, that
is, cDi = cDi+1 , for all i ≥ 0. We denote c’s interpretation
by cD̄.

We call the indexes of the τis and Dis time points and the
τis timestamps. In particular, τi is the timestamp at time
point i ∈ N. Note that there can be successive time points
with equal timestamps. Furthermore, note that the relations
rD0 , rD1 , . . . in a temporal structure (D̄, τ̄) corresponding to a
predicate symbol r ∈ R may change over time. In contrast, the
interpretation of the constant symbols c ∈ C and the domain
of the Dis do not change over time.

A valuation is a mapping v : V → |D̄|. We abuse notation
by applying a valuation v also to constant symbols c ∈ C, with
v(c) = cD̄. For a valuation v, a variable x, and d ∈ |D̄|, v[x/d]
is the valuation mapping x to d and leaving other variables’
valuation unchanged.

The semantics of MFOTL, (D̄, τ̄, v, i) |= φ, is given in
Figure 2, where (D̄, τ̄) is a temporal structure over the signa-
ture S , with D̄ = (D0,D1, . . . ), τ̄ = (τ0, τ1, . . . ), v a valuation,
i ∈ N, and φ a formula over S . The temporal operatorsd- I (“previous”), d

I (“next”), SI (“since”), and UI (“until”)
allow us to express both quantitative and qualitative properties
with respect to the ordering of elements in the relations of
the Dis in the temporal structure (D̄, τ̄). Note that they are
labeled with intervals I and a formula of the form ( d- I φ),
( dI φ), (φSIψ), or (φUIψ) is only satisfied in (D̄, τ̄) at the time
point i, if it is satisfied within the bounds given by the interval I
of the respective temporal operator, which are relative to the
current timestamp τi.

Terminology and Notation. We omit parentheses where
possible by using the standard conventions about the binding
strengths of the logical connectives. For instance, Boolean
operators bind stronger than temporal ones and unary operators
bind stronger than binary ones. We use standard syntactic
sugar such as �- I φ := true SI φ, �I φ := true UI φ, �- I φ :=
¬ �- I ¬φ, and �I φ := ¬ �I ¬φ, where true := ∃x. x ≈ x.
Intuitively, the formula �- I φ states that φ holds at some time
point in the past within the time window I and the formula
�- I φ states that φ holds at all time points in the past within
the time window I. If the interval I includes zero, then the
current time point is also considered. The corresponding future

operators are �I and �I . We also use non-metric operators like
� φ := �[0,∞) φ. A formula φ is bounded if the interval I of
every temporal operator UI occurring in φ is finite. We use
standard terminology like atomic formula and subformula.

2.2 Monitoring

We now illustrate our use of MFOTL and our monitoring
algorithm for compliance checking [10]. Consider the simple
policy stating that reports must have been approved within at
most 10 time units before they are published:

�∀x. publish(x)→ �- [0,11) approve(x) .

We assume that the actions for publishing and approving
reports are logged in relations. Specifically, for each time point
i ∈ N, we have the unary relations PUBLISHi and APPROVEi

such that (1) f ∈ PUBLISHi iff the report f is published at
time point i and (2) f ∈ APPROVEi iff the report f is approved
at time point i. Observe that there can be multiple approvals at
the same time point for different reports. Furthermore, every
time point i has a timestamp τi ∈ N.

Given a sequence of logged publishing and approval ac-
tions, the corresponding temporal structure (D̄, τ̄) with D̄ =

(D0,D1, . . . ) and τ̄ = (τ0, τ1, . . . ) is as follows. The only
predicate symbols in D̄’s signature are publish and approve,
both of arity 1. We assume that every report is uniquely
identified by a natural number. The domain of D̄ contains all
these numbers, that is, |D̄| = N. The ith structure in D̄ contains
the relations PUBLISHi and APPROVEi. The ith timestamp is
simply τi, the time when these actions occurred.

To detect policy violations, our monitoring algorithm itera-
tively processes the temporal structure (D̄, τ̄) representing the
stream of logged actions. This can be done offline or online.
At each time point i, it outputs the valuations satisfying the
negation of the formula ψ = publish(x) → �- [0,11) approve(x),
which is ¬ψ and equivalent to publish(x)∧�- [0,11) ¬approve(x).
Note that we drop the outermost quantifier since we are not
only interested in whether the policy is violated but we also
want to provide additional information about the reported
violations, namely, the reports that were published and not
approved within the specified time window.

In a nutshell, the monitoring algorithm works as follows.
It iterates over the structures Di and their associated time-
stamps τi, where i is initially 0 and is incremented with
each iteration. At each iteration, the algorithm incrementally
maintains a collection of finite auxiliary relations for previous
time points. Roughly speaking, for each time point j ≤ i,
these relations store the elements that satisfy the temporal
subformulas of ¬ψ at the time point j. If the temporal
subformula of ¬ψ refers to future time points, the algorithm
might need to postpone the construction of such an auxiliary
relation to a later iteration, until the processed prefix of (D̄, τ̄)
is long enough to evaluate the subformula at time point j. The
algorithm discards auxiliary relations whenever they become
irrelevant for detecting further violations. The monitoring
algorithm has been implemented in our tool MONPOLY [14].

In general, we assume that policies formalized in MFOTL
are of the form �ψ, where ψ is bounded. Since ψ is bounded,
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the monitor only needs to take into account a finite prefix
of (D̄, τ̄) when determining the satisfying valuations of ¬ψ
at any given time point. To effectively determine all these
valuations, we also assume here that predicate symbols have
finite interpretations in (D̄, τ̄), that is, the relation rD j is finite,
for every predicate symbol r and every j ∈ N. Furthermore,
we require that ¬ψ can be rewritten to a temporal-subformula-
domain-independent formula [10], a generalization of the
standard notion of domain-independent database queries [17].
We refer to [10] for a detailed description of the monitoring
algorithm. Additional algorithmic details are also presented in
Appendix A, for the sake of completeness.

Note that the monitoring algorithm assumes a total order-
ing on the logged actions. However, a total ordering is not
necessarily available in a distributed and concurrent system.
Moreover, policy compliance may depend on such a total
ordering. For example, consider the policy for publishing
and approving reports and a system in which the publish
and approval actions are performed and logged by different
system parts. If two such corresponding actions are equally
timestamped and when assuming an interleaving semantics of
the system parts, then two orderings of the actions are possible:
(i) the report is first approved and then published and (ii) the
report is published before being approved. For the ordering (i)
the policy is satisfied, while for (ii) it is violated in case there
is no other approval within the specified time window.

3 Monitoring Concurrently Logged Actions
In this section, we first prove the intractability of monitoring
when multiple log files are produced in a concurrent setting.
We then motivate two solutions where only a single represen-
tative log is monitored. In Sections 4 and 5, we show when
monitoring a single such log is sufficient. A comparison of the
two solutions is given in Section 6.

Log Interleavings. Intuitively, an interleaving of logs
preserves the ordering of the logged actions with respect to
their timestamps, but allows for any possible ordering of ac-
tions with equal timestamps that are recorded by different log
producers. To define an interleaving, for a function f : X → Y ,
let img( f ) denote the set {y ∈ Y | f (x) = y, for some x ∈ X}.
Furthermore, we assume in this section that all temporal
structures have the same signature (C,R, ι), equal domains,
and that constant symbols are equally interpreted. Note that
any two temporal structures whose common constant symbols
are equally interpreted can easily be extended so that their
extensions fulfill this requirement.

Definition 3.1. Let (D̄1, τ̄1), (D̄2, τ̄2), and (D̄, τ̄) be temporal
structures. (D̄, τ̄) is an interleaving of (D̄1, τ̄1) and (D̄2, τ̄2) if
there are strictly monotonic functions f1, f2 : N→ N with
(1) img( f1) ∪ img( f2) = N,
(2) img( f1) ∩ img( f2) = ∅, and
(3) τk

i = τ fk(i) and rD
k
i = rD fk (i) , for all k ∈ {1, 2}, i ∈ N, r ∈ R.

We denote by (D̄1, τ̄1) ./ (D̄2, τ̄2) the set of interleavings of the
temporal structures (D̄1, τ̄1) and (D̄2, τ̄2).

Since there are usually multiple interleavings of two tem-
poral structures, we formulate policy violations with respect
to a set of temporal structures.

Definition 3.2. Let T be a set of temporal structures.
(1) T weakly violates the formula φ at time point i ∈ N if

for some (D̄, τ̄) ∈ T and some valuation v, it holds that
(D̄, τ̄, v, i) 6|= φ.

(2) T strongly violates the formula φ at time point i ∈ N if
for all (D̄, τ̄) ∈ T, there is some valuation v such that
(D̄, τ̄, v, i) 6|= φ.

Unfortunately, even in a propositional setting, determining
whether the set of interleavings weakly or strongly violates a
formula is intractable.

Theorem 3.3. Let (D̄1, τ̄1) and (D̄2, τ̄2) be temporal struc-
tures, i ∈ N, and φ a quantifier-free sentence with only
Boolean and non-metric past operators that neither contains
the equality symbol ≈ nor the ordering symbol ≺.
1. Determining whether the set of interleavings (D̄1, τ̄1) ./

(D̄2, τ̄2) weakly violates φ at i is NP-complete.
2. Determining whether the set of interleavings (D̄1, τ̄1) ./

(D̄2, τ̄2) strongly violates φ at i is coNP-complete.

Note that both decision problems are well defined as φ
does not contain future operators. We therefore only need to
examine the finite prefixes with length i+1 of the interleavings
to determine whether φ is weakly or strongly violated at the
time point i.

We remark that related intractability results for LTL on
so-called partially ordered traces are given in [18] and [19].
The setting in [18] is different from ours. In particular, it
is unclear how to describe the set of interleavings of two
timestamped traces using partially ordered traces as defined
in [18]. Moreover, we reduce the checking of the satisfiability
and validity of formulas in propositional logic, respectively,
to the respective decision problem for proving its hardness.
In [18], the global-predicate-detection decision problem [20]
is used. The setting in [19] allows for arbitrary partial orders
and hence could be used to describe the set of interleavings
of two timestamped traces. The authors reduce the decision
problem 3-SAT to the problem of determining whether all
possible interleavings satisfy a formula.

Sufficient Logs. We first give conditions with respect to
an arbitrary set of temporal structures for when it suffices to
monitor a single temporal structure.

Definition 3.4. The temporal structure (C̄, κ̄) is sufficient for
the formula φ on the set T of temporal structures if for all
valuations v, the following conditions are fulfilled:
(S1) If (C̄, κ̄, v, 0) |= φ then (D̄, τ̄, v, 0) |= φ, for all (D̄, τ̄) ∈ T.
(S2) If (C̄, κ̄, v, 0) 6|= φ then (D̄, τ̄, v, 0) 6|= φ, for all (D̄, τ̄) ∈ T.

Note that the actual ordering of actions logged with equal
timestamps in a concurrent system cannot be known unless
there is an additional mechanism to order these events. In-
stead of adding such mechanisms, we identify two classes
of policies, which are indifferent to the ordering of equally
timestamped actions, the interleaving-sufficient and collapse-
sufficient policies. Formulas in both classes can be efficiently
monitored by inspecting just a single temporal structure in-
stead of all the possible interleavings. For both classes, the
set T in Definition 3.4 is the set of all interleavings of
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Fig. 3. Example of a Collapsed Interleaving, logc, of the Temporal Structures
log1 and log2

two temporal structures. For an interleaving-sufficient policy,
inspecting an arbitrary interleaving is sufficient to determine
whether the policy is strongly violated. With collapse-sufficient
policies we exploit the inability to distinguish the ordering of
events logged with equal timestamps to make monitoring more
efficient and inspect the so-called collapse of an interleaving:

Definition 3.5. Let (D̄, τ̄) and (C̄, κ̄) be temporal structures.
(C̄, κ̄) is a collapse of (D̄, τ̄) if there is a monotonic surjective
function f : N→ N such that
(1) if τi = τ j then f (i) = f ( j), for all i, j ∈ N,
(2) κ f (i) = τi, for all i ∈ N, and
(3) rC j =

⋃
i∈ f −1( j) rDi , for all j ∈ N and r ∈ R.

Intuitively, the structures of the temporal structure (D̄, τ̄)
with equal timestamps are collapsed into a single structure.
Figure 3 depicts an example of collapsing. The collapse is
uniquely defined and we denote it by col(D̄, τ̄). Furthermore,
the collapses of temporal structures in the set of interleavings
of two given temporal structures are all isomorphic. Note that
the set of interleavings is strictly included in the set of collapse
pre-images, that is, (D̄, τ̄) ./ (D̄′, τ̄′) ( col−1(C̄, κ̄), where (C̄, κ̄)
is the collapse of an interleaving of the temporal structures
(D̄, τ̄) and (D̄′, τ̄′).

4 Monitoring an Interleaving
In this section we describe an interleaving-sufficient fragment.
Intuitively, interleaving-sufficient formulas are those formulas
that yield neither false positives nor false negatives when
monitoring an interleaving. This is because they either satisfy
all possible interleavings of two temporal structures or they
violate all possible interleavings.

Definition 4.1. Let φ be a formula. For k ∈ {1, 2}, we say that
φ has the property (Ik) if (C̄, κ̄) fulfills the condition (Sk) in
Definition 3.4 with respect to φ and (D̄, τ̄) ./ (D̄′, τ̄′), for every
(D̄, τ̄), (D̄′, τ̄′), and (C̄, κ̄), where (C̄, κ̄) is an interleaving of
(D̄, τ̄) and (D̄′, τ̄′). Moreover, φ is interleaving-sufficient if it
has the properties (I1) and (I2).

Note that we define interleaving-sufficiency only as a prop-
erty of the formula. We could alternatively consider a refined
notion that limits the interleavings on which the formula must

hold. For example, if the relations of certain predicate symbols
are logged by a single logging mechanism then we can impose
conditions that the temporal structures (D̄, τ̄) and (D̄′, τ̄′) in
the above definition must fulfill. This would enlarge the set
of interleaving-sufficient formulas. However, for the ease of
exposition, we restrict ourselves here to the property as defined
in Definition 4.1.

Monitoring an arbitrary interleaving with respect to an
interleaving-sufficient formula is correct for strong violations.
Since the formula has property (I2), violations found in
(C̄, κ̄) imply that the set of interleavings strongly violates
the formula. The converse is ensured by the property (I1):
if no violation is found in (C̄, κ̄), then all interleavings are
policy compliant. Furthermore, by monitoring (C̄, κ̄) we also
detect when the set of interleavings both weakly and strongly
violates the given formula. The reason is that if a formula is
strongly violated by a set of interleavings then it is also weakly
violated, since the set of interleavings is always nonempty.

Example 4.2. Recall the formula �∀x. publish(x) →

�- [0,11) approve(x) from the example in Section 2.2. It is not
interleaving-sufficient. Suppose that a report x is published
in (D̄1, τ̄1) at time point i, that is, x ∈ publishD1

i and only
approved in (D̄2, τ̄2) at the equally timestamped time point j,
that is, x ∈ approveD

2
j with τ2

j = τ1
i . Then there is an

interleaving (D̄, τ̄) ∈ (D̄1, τ̄1) ./ (D̄2, τ̄2) where the approval
action comes (pointwise) strictly after the publish action. We
cannot handle this formula correctly by monitoring just a
single interleaving of the given temporal structures (D̄1, τ̄1)
and (D̄2, τ̄2).

A slightly stronger policy however can be efficiently mon-
itored. Namely, the policy that requires that an approval
action must happen timewise strictly before the publish ac-
tion, that is, �∀x. publish(x) → �- [1,11) approve(x). This for-
mula is interleaving-sufficient. Similarly, �∀x. publish(x) →
�[0,1) �- [0,11) approve(x) is also interleaving-sufficient. It for-

malizes the slightly weaker policy where every publish action
must be approved at a time point with a timestamp that is
less than or equal to the timestamp of the time point when the
publish action happens.

Theorem 4.3. Given an MFOTL formula φ, it is undecidable
whether φ is interleaving-sufficient.

Given undecidability, we proceed by providing sufficient
conditions for φ being interleaving-sufficient. We do this by
identifying a subset of formulas using a labeling algorithm.

Our algorithm labels the atomic subformulas of the given
formula and propagates these labels bottom-up to the formula’s
root using a fixed set of labeling rules. We use two labels:
ONE and ALL. They represent properties that capture the
relationship between violations found in one interleaving and
violations found in other interleavings. If a formula with the
label ONE is satisfied at a time point in one interleaving, then
the formula is also satisfied in all other interleavings at the
corresponding time point. If a formula with the label ALL is
satisfied at a time point with timestamp τ in one interleaving,
then the formula is also satisfied in all other interleavings at
all time points with the timestamp τ. We formally state these
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φ : ALL
φ : ONE

t ≈ t′ : ALL t ≺ t′ : ALL r(t1, . . . , tι(r)) : ONE

φ : ONE
¬φ : ONE

φ : ALL
¬φ : ALL

φ : ONE ψ : ONE
φ ∨ ψ : ONE

φ : ALL ψ : ALL
φ ∨ ψ : ALL

∃x. φ : ONE
∃x. φ : ONE

∃x. φ : ALL
∃x. φ : ALL

φ : ALL ψ : ALL
φ SI ψ : ALL

φ : ALL ψ : ALL
φ UI ψ : ALL

φ : ONE

�- I φ : ALL
0 < I

φ : ONE

�I φ : ALL
0 < I

φ : ONE

�- I �J φ : ALL
φ : ONE

�I �- J φ : ALL

Fig. 4. Labeling Rules (Interleaving)

properties in the following definition.

Definition 4.4. Let (D̄1, τ̄1) and (D̄2, τ̄2) be two temporal
structures and (D̄, τ̄) and (D̄′, τ̄′) be two arbitrary interleav-
ings from the set (D̄1, τ̄1) ./ (D̄2, τ̄2).
– We say that the formula φ has the property ONE when the

following holds: If (D̄, τ̄, v, i) |= φ, for some valuation v
and time point i ∈ N then (D̄′, τ̄′, v, i′) |= φ for the time
point i′ ∈ N, where i′ is the time point corresponding to
i. That is, there are k ∈ {1, 2} and j ∈ N with i = fk( j)
and i′ = f ′k ( j) with f1, f2 being the functions used in the
interleaving (D̄, τ̄), and f ′1 , f ′2 the functions used in the
interleaving (D̄′, τ̄′).

– We say that the formula φ has the property ALL when the
following holds: If (D̄, τ̄, v, i) |= φ, for some valuation v and
time point i ∈ N then for all time points i′ ∈ N with τi = τ′i′ ,
it holds that (D̄′, τ̄′, v, i′) |= φ.

We overload notation and identify each label with its
corresponding property. The labeling is done using the rules
in Figure 4. To improve readability, we use syntactic sugar in
the rules. When applying the rules, we assume that syntactic
sugar is unfolded in both the rules and the formula. Note that
multiple rules may be applicable to a subformula. In this case,
multiple labels may be assigned to the subformula. We use
the notation φ : ` as shorthand for “φ’s label includes `.”
By labeling the subformula bottom-up and by attempting to
apply all rules before proceeding up to the next subformula,
we ensure that a formula is assigned with all possible labels.

Lemma 4.5. Let φ be a formula. If φ can be labeled with `,
then φ has the property `, where ` ∈

{
ONE,ALL}.

Lemma 4.5 shows the soundness of our labeling rules. Here,
we explain just the most representative rules. The first line in
Figure 4 shows the weakening rule. The property correspond-
ing to the label ALL implies the property corresponding to
ONE.

The next line shows rules for atomic formulas. An atomic
formula t ≈ t′ or t ≺ t′ depends only on the valuation
and therefore can be labeled ALL. An atomic formula of
the form r(t1, . . . , tι(r)) can be labeled ONE. If a predicate
symbol is satisfied at some time point in an interleaving,
then it is also satisfied at the corresponding time point in

another interleaving. Hence, we label it with ONE. However,
we cannot label it with ALL because we do not know whether
it is satisfied at other time points with equal timestamps.

Next, we consider labeling rules for the temporal opera-
tor �- I . If the formula �- I φ is satisfied at time point i, then
the subformula φ is satisfied at some time point j ≤ i. If φ
is labeled ONE, then in any other interleaving the time point
corresponding to j also satisfies φ. However, if the time points
i and j have equal timestamps, then their relative ordering can
be exchanged in another interleaving. In this case, the formula
�- I φ would not be satisfied at the time point corresponding to i.

If 0 < I then the time points i and j must have differ-
ent timestamps. Therefore, their relative ordering cannot be
changed in any interleaving. In this case, not only the time
point corresponding to i satisfies the formula �- I φ, but all time
points with an equal timestamp as i satisfy this formula. We
can therefore propagate the label ONE as ALL if 0 < I, but
cannot propagate it if 0 ∈ I.

We also consider the case when the subformula φ is labeled
ALL. In this case, all time points with an equal timestamp as
j satisfy φ. But then, independent of the relative ordering of
these time points, all time points with an equal timestamp as
i satisfy �- I φ. Hence, we can propagate φ’s label ALL to �- I φ
without any restrictions on I. The rule for ALL is not shown in
Figure 4, but can be derived from the rule for the operator SI

after unfolding the syntactic sugar of �- I φ into (∃x. x ≈ x)SIφ.
We can try to label a formula solely based on labeling

rules that involve only a single Boolean or temporal operator.
However, by using more specialized labeling rules like the
one for �- I �J ψ, we are more likely to succeed in propagating
a label to the formula’s root. Intuitively, with the nesting of
the operators �- I and �J , the ordering of equally timestamped
time points becomes irrelevant since, from a given time point,
we can freely choose any of these time points that satisfy the
metric constraints given by the intervals I and J. Hence, a
labeling ONE for ψ allows us to label �- I �J ψ with ALL.

Finally, there are no labeling rules for the temporal operatorsd- I and d
I because these operators inherently rely on the

relative ordering of time points.

Theorem 4.6. Let φ be a formula.
1. If φ is labeled ALL, then φ is interleaving-sufficient.
2. If φ is labeled ONE, then � φ is interleaving-sufficient.
Moreover, we can determine in linear time in the formula’s
length whether φ can be labeled by ONE or ALL.

Example 4.7. We illustrate our algorithm by applying it
to the formula �∀x. publish(x) → �- [0,11) approve(x). We
first remove some syntactic sugar and obtain the formula
�∀x.¬publish(x)∨ �- [0,11) approve(x). We start by labeling the
atomic subformulas. Both publish(x) and approve(x) are la-
beled with ONE. Hence, the subformula ¬publish(x) is also la-
beled with ONE. However, we cannot propagate the label ONE
to the subformula �- [0,11) approve(x) because the interval of
the operator �- includes 0. We therefore cannot propagate any
labels to the subformulas ¬publish(x)∨ �- [0,11) approve(x) and
∀x.¬publish(x)∨ �- [0,11) approve(x). We conclude that the for-
mula �∀x.¬publish(x)∨ �- [0,11) approve(x) is not interleaving-
sufficient, as explained in Example 4.2.
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The formula �∀x. publish(x) → �- [1,11) approve(x) is
interleaving-sufficient. The labeling starts similarly but
�- [1,11) approve(x) can be labeled with ALL since the

interval of the temporal operator does not contain 0.
This label is weakened to ONE and propagates to the
formula ∀x.¬publish(x)∨ �- [1,11) approve(x). We conclude that
�∀x.¬publish(x)∨ �- [1,11) approve(x) is interleaving-sufficient.

Note that the defined fragment is sound, but incomplete.
In particular, the converse of statements 1 and 2 in Theo-
rem 4.6 is false. For example, the formula �∀x. publish(x)→
( �[0,1) approve(x))∨ �- [0,11) approve(x) is interleaving-sufficient,
but cannot be labeled as required by Theorem 4.6. How-
ever, the semantically equivalent formula �∀x. publish(x) →
�[0,1) �- [0,11) approve(x) is recognized as interleaving-sufficient

by the rules in Figure 4. We could enlarge the fragment by
adding rules that handle this particular formula. However,
since it is undecidable whether a formula is interleaving-
sufficient (Theorem 4.3) we cannot make the syntactically-
defined fragment decidable, sound, and complete.

5 Monitoring the Collapse

In this section we describe a collapse-sufficient fragment. Intu-
itively, collapse-sufficient formulas are those formulas that do
not yield false positives and false negatives when monitoring
the collapse of an interleaving:

Definition 5.1. Let φ be a formula. For k ∈ {1, 2}, we say that
φ has the property (Ck) if (C̄, κ̄) fulfills the condition (Sk) in
Definition 3.4 with respect to φ and (D̄, τ̄) ./ (D̄′, τ̄′), for every
(D̄, τ̄), (D̄′, τ̄′), and (C̄, κ̄), where (C̄, κ̄) is the collapse of an
interleaving of (D̄, τ̄) and (D̄′, τ̄′). Moreover, φ is collapse-
sufficient if it has the properties (C1) and (C2).

Monitoring the collapse with respect to a collapse-sufficient
formula is correct for strong violations. Since strong viola-
tions are trivially also weak violations, we detect some weak
violations as well. However, we may miss violations that are
weak, but not strong.

Note that the formula from the example in Section 2.2 is
not collapse-sufficient, but the weaker and stronger formu-
las from Example 4.2 are collapse-sufficient. Also note that
stutter-invariance [21] is a necessary condition for collapse-
sufficiency. However, it is not a sufficient condition. For
example, the formula �∀x. p(x) ∧ q(x) is stuttering-invariant
but not collapse-sufficient.

As with interleaving-sufficient formulas, it is undecidable
whether a formula is collapse-sufficient, as stated in Theo-
rem 5.2.

Theorem 5.2. Given an MFOTL formula φ, it is undecidable
whether φ is collapse-sufficient.

Our collapse-sufficient fragment is, similar to the
interleaving-sufficient fragment in Section 4, defined by
a labeling algorithm. The labels represent properties, which
capture the relation between violations found in a collapsed
temporal structure at some time point and violations found
in pre-images of the collapsing at a time point with an equal

timestamp. We formally state these properties in the following
definition.

Definition 5.3. Let (C̄, κ̄) be a collapsed temporal structure
and let col−1(C̄, κ̄) denote the pre-images of collapsing, that
is, the set of temporal structures (D̄, τ̄) with col(D̄, τ̄) = (C̄, κ̄).
– The formula φ has the property (|=∀) when the following

holds: For all valuations v and all i ∈ N, if (C̄, κ̄, v, i) |= φ
then for every (D̄, τ̄) ∈ col−1(C̄, κ̄) and every j ∈ N with
κi = τ j, it holds that (D̄, τ̄, v, j) |= φ.

– The formula φ has the property (|=∃) when the following
holds: For all valuations v and all i ∈ N, if (C̄, κ̄, v, i) |= φ
then for every (D̄, τ̄) ∈ col−1(C̄, κ̄), there is some j ∈ N with
κi = τ j such that (D̄, τ̄, v, j) |= φ.

– The formula φ has the property (6|=∀) when the following
holds: For all valuations v and all i ∈ N, if (C̄, κ̄, v, i) 6|= φ
then for every (D̄, τ̄) ∈ col−1(C̄, κ̄) and every j ∈ N with
κi = τ j, it holds that (D̄, τ̄, v, j) 6|= φ.

– The formula φ has the property (6|=∃) when the following
holds: For all valuations v and all i ∈ N, if (C̄, κ̄, v, i) 6|= φ
then for every (D̄, τ̄) ∈ col−1(C̄, κ̄), there is some j ∈ N with
κi = τ j such that (D̄, τ̄, v, j) 6|= φ.

The first symbol (|= or 6|=) in a property indicates whether the
formula is satisfied in the collapsed temporal structure (C̄, κ̄).
The second symbol (∃ or ∀) states whether the formula is
satisfied at all equally timestamped time points or at some
equally timestamped time point in all temporal structures
(D̄, τ̄) ∈ col−1(C̄, κ̄).

Again, we overload notation and identify each label with
its corresponding property. Figure 5 lists the labeling rules.
In addition, Figure 6 lists rules for the Boolean operator ∧,
the quantifier ∀, and the temporal operators trigger TI and
release RI . These rules are used for formulas in positive normal
form, which we require in Section 6. Recall that formulas in
this normal form are obtained by pushing negation inside until
it appears only in front of atomic formulas. When considering
these formulas, the operators ∧, ∀, TI , and RI are seen as
primitives, instead of being defined as syntactic sugar. We
recall that ψTIχ abbreviates ¬(¬ψSI¬χ) and ψRIχ abbreviates
¬(¬ψ UI ¬χ).

Lemma 5.4. Let φ be a formula. If φ can be labeled with `,
then φ has the property `, where ` ∈

{
(|=∀), (6|=∀), ( 6|=∃), (|=∃)

}
.

Lemma 5.4 shows the soundness of our labeling rules. Here,
we explain just the most representative rules. The first two
rules in Figure 5 express that the properties corresponding to
the labels (|=∀) and (6|=∀) imply the properties corresponding
to (|=∃) and ( 6|=∃), respectively.

The next two lines in Figure 5 are rules for atomic formulas.
An atomic formula t ≈ t′ or t ≺ t′ depends only on the valua-
tion and therefore can be labeled (|=∀) and ( 6|=∀). An atomic
formula of the form r(t1, . . . , tι(r)) can be labeled (|=∃) and
( 6|=∀). We only explain the labeling (|=∃). The explanation for
the label ( 6|=∀) is analogous. The interpretation of a predicate
symbol in a collapsed temporal structure (C̄, κ̄) at a time point i
is the union of the predicate symbol’s interpretations at all time
points j in a temporal structure (D̄, τ̄) ∈ col−1(C̄, κ̄) for which
τ j equals κi. Therefore, if ā ∈ rCi then ā ∈ rD j , for some j ∈ N
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φ : (|=∀)
φ : (|=∃)

φ : (6|=∀)
φ : (6|=∃)

t ≈ t′ : (|=∀) t ≈ t′ : (6|=∀) t ≺ t′ : (|=∀) t ≺ t′ : (6|=∀)

r(t1, . . . , tι(r)) : (|=∃) r(t1, . . . , tι(r)) : (6|=∀)

ψ : (|=∃)
¬ψ : (6|=∃)

ψ : (|=∀)
¬ψ : (6|=∀)

ψ : (6|=∃)
¬ψ : (|=∃)

ψ : (6|=∀)
¬ψ : (|=∀)

ψ : (6|=∀) χ : (6|=∀)
ψ ∨ χ : (6|=∀)

ψ : (6|=∀) χ : (6|=∃)
ψ ∨ χ : (6|=∃)

ψ : (|=∀) χ : (|=∀)
ψ ∨ χ : (|=∀)

ψ : (|=∃) χ : (|=∃)
ψ ∨ χ : (|=∃)

ψ : (|=∀)
∃x. ψ : (|=∀)

ψ : (|=∃)
∃x. ψ : (|=∃)

ψ : (6|=∀)
∃x. ψ : (6|=∀)

ψ : (6|=∃)
∃x. ψ : (6|=∃)

ψ : (|=∀) χ : (|=∀)
ψ SI χ : (|=∀)

ψ : (6|=∀) χ : (6|=∀)
ψ SI χ : (6|=∀)

ψ : (6|=∃) χ : (6|=∀)
ψ SI χ : (6|=∃)

ψ : (|=∀) χ : (|=∀)
ψ UI χ : (|=∀)

ψ : (6|=∀) χ : (6|=∀)
ψ UI χ : (6|=∀)

ψ : (6|=∃) χ : (6|=∀)
ψ UI χ : (6|=∃)

ψ : (6|=∃) χ : (6|=∀)
(ψ SI χ) ∧ (�J ψ) : (6|=∀)

0 < I, 0 ∈ J
ψ : (6|=∃) χ : (6|=∀)

(ψ UI χ) ∧ (�- J ψ) : (6|=∀)
0 < I, 0 ∈ J

ψ : (|=∃)

�- I ψ : (|=∃)
ψ : (|=∃)

�- I ψ : (|=∀)
0 < I

ψ : (|=∃)

�I ψ : (|=∃)
ψ : (|=∃)

�I ψ : (|=∀)
0 < I

ψ : (|=∃)

�- I �J ψ : (|=∀)
0 ∈ I ∩ J

ψ : (|=∃)

�I �- J ψ : (|=∀)
0 ∈ I ∩ J

Fig. 5. Labeling Rules (Collapse)

ψ : (|=∀) χ : (|=∀)
ψ ∧ χ : (|=∀)

ψ : (|=∀) χ : (|=∃)
ψ ∧ χ : (|=∃)

ψ : (6|=∀) χ : (6|=∀)
ψ ∧ χ : (6|=∀)

ψ : (6|=∃) χ : (6|=∃)
ψ ∧ χ : (6|=∃)

ψ : (|=∀)
∀x. ψ : (|=∀)

ψ : (|=∃)
∀x. ψ : (|=∃)

ψ : (6|=∀)
∀x. ψ : (6|=∀)

ψ : (6|=∃)
∀x. ψ : (6|=∃)

ψ : (6|=∀) χ : (6|=∀)
ψ TI χ : (6|=∀)

ψ : (|=∀) χ : (|=∀)
ψ TI χ : (|=∀)

ψ : (|=∃) χ : (|=∀)
ψ TI χ : (|=∃)

ψ : (|=∃) χ : (|=∀)
(ψ TI χ) ∨ ( �J ψ) : (|=∀)

0 < I, 0 ∈ J

ψ : (6|=∀) χ : (6|=∀)
ψ RI χ : (6|=∀)

ψ : (|=∀) χ : (|=∀)
ψ RI χ : (|=∀)

ψ : (|=∃) χ : (|=∀)
ψ RI χ : (|=∃)

ψ : (|=∃) χ : (|=∀)
(ψ RI χ) ∨ ( �- J ψ) : (|=∀)

0 < I, 0 ∈ J

Fig. 6. Labeling Rules for Formulas in Positive Normal Form

with τ j = κi. Note that ā ∈ rD j does not necessarily hold for
all of these js; hence, we cannot label r(t1, . . . , tι(r)) with (|=∀).

We next consider the labeling rules for the temporal oper-
ator SI . To ease our explanation, we just consider the special
case �- I ψ = true SI ψ. We first justify the rule that propagates
the label (|=∀) from ψ to �- I ψ. It is not shown in Figure 5, but
can be derived from the rule for the operator SI after unfolding
the syntactic sugar �- I φ, by observing that true can be labeled
with (|=∀). If �- I ψ is satisfied in the collapsed temporal
structure (C̄, κ̄) at time point i then ψ is satisfied at some
previous time point j ≤ i in (C̄, κ̄) with κi − κ j ∈ I. Because
ψ is labeled with (|=∀), all time points with timestamp κ j in
the temporal structure (D̄, τ̄) ∈ col−1(C̄, κ̄) also satisfy ψ, and
hence, all time points with timestamp κi satisfy �- I ψ in (D̄, τ̄).
When ψ is labeled with (|=∃), possibly only a single time point
k in (D̄, τ̄) with τk = κ j satisfies ψ. If 0 ∈ I then �- I ψ might not
be satisfied at time points before k, even if these time points
have the timestamp κi. So, we can label �- I with (|=∃) but
not with (|=∀). However, if 0 < I then ψ is satisfied in (C̄, κ̄)
at a time point j with the timestamp κ j < κi. Hence �- I ψ is
satisfied in (D̄, τ̄) at all time points with the timestamp κi.
This allows us to label �- I ψ with (|=∀). Finally, when ψ is
labeled (6|=∀), then �- I ψ can also be labeled with (6|=∀). This
rule is not shown in Figure 5, but it can be derived from the
rule for the operator SI , like the rule for the label (|=∀). If
�- I ψ is violated in the collapsed temporal structure (C̄, κ̄) at

timestamp κi, then ψ is violated at all previous points in the
temporal structure (D̄, τ̄) ∈ col−1(C̄, κ̄) that satisfy the metric
constraints given by I. But then �- I ψ is also violated in (D̄, τ̄)
at all time points with the timestamp κi. Hence we can label
�- I ψ with ( 6|=∀).

We can try to label a formula solely based on labeling
rules that involve only a single Boolean or temporal operator.
However, with additional specialized labeling rules like the
one for �- I �J ψ, we are more likely to succeed in propagating
labels to the root of the formula. Intuitively, with the nesting
of the operators �- I and �J , and when 0 ∈ I ∩ J, the ordering
of equally timestamped time points becomes irrelevant since
from a given time point, we can freely choose any of the time
points that satisfy the metric constraints given by the intervals I
and J. Hence, a labeling (|=∃) for ψ allows us to label �- I �J ψ
with (|=∀).

Based on the labels at a formula’s root, we can determine
if the formula has the property (C1) or (C2). The conclusions
we can draw are stated in the following lemma, which follows
from the soundness of the labeling rules.

Lemma 5.5. Let φ be a formula.

1. If φ can be labeled by (|=∀) then φ has the property (C1).
2. If φ can be labeled by ( 6|=∀) then φ has the property (C2).
3. If φ can be labeled by (|=∃) then � φ has the property (C1).
4. If φ can be labeled by (6|=∃) then � φ has the property (C2).

Based on this lemma, we obtain the following theorem.

Theorem 5.6. If the formula φ can be labeled by (|=∀) and
( 6|=∀), then it is collapse-sufficient. Moreover, we can determine
in linear time in the formula’s length whether φ can be labeled
by (|=∀), (|=∃), ( 6|=∀), or ( 6|=∃).
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Note that formulas of the form �ψ are already collapse-
sufficient if ψ can be labeled by (6|=∃) and �ψ can be labeled
by (|=∀). Even if only one of these labellings can be derived,
monitoring �ψ on the collapsed temporal structure of an
interleaving is still useful. For example, if ψ is labeled by
( 6|=∃) then violations that are found on the collapsed temporal
structure relate to strong violations on the set of interleavings.
However, we might miss some violations.

Example 5.7. We illustrate our algorithm by applying it
to the formulas from Example 4.2. Unlike in Example 4.2,
we use the labels (|=∀), (|=∃), ( 6|=∀), and ( 6|=∃) and the
rules shown in Figure 5. First, we consider the formula
�∀x.¬publish(x) ∨ �- [0,11) approve(x). Both of its atomic sub-
formulas publish(x) and approve(x) are labeled with (|=∃) and
( 6|=∀). We label the subformula �- [0,11) approve(x) with (|=∃)
and ( 6|=∀). We cannot label it with (|=∀) since the interval
contains 0. The subformula ¬publish(x) is labeled with (6|=∃)
and (|=∀). The subformulas ¬publish(x) ∨ �- [0,11) approve(x)
and ∀x.¬publish(x) ∨ �- [0,11) approve(x) are labeled (|=∃)
and ( 6|=∃). We conclude that the formula �∀x.¬publish(x) ∨
�- [0,11) approve(x) has the property (C2). It does not have the

property (C1), as explained in Example 4.2.
The formula �∀x. publish(x)→ �- [1,11) approve(x) has both

properties (C1) and (C2). The labeling starts similarly but
�- [1,11) approve(x) is additionally labeled with (|=∀) since the

interval of the temporal operator does not contain 0. This
label propagates to the formula’s root. We conclude that
�∀x.¬publish(x) ∨ �- [1,11) approve(x) also has property (C1).

As in the interleaving-sufficient case, the defined fragment
is incomplete, which is again witnessed by the formula
�∀x. publish(x) → ( �[0,1) approve(x)) ∨ �- [0,11) approve(x). It
is collapse-sufficient, but cannot be labeled as required by
Theorem 5.6. Note that the semantically equivalent formula
�∀x. publish(x) → �[0,1) �- [0,11) approve(x) is recognized as
collapse-sufficient using the rules shown in Figure 5.

6 Sufficient Fragments
In this section, we compare the interleaving-sufficient and
collapse-sufficient fragments and present a generic recipe that
approximates policies to obtain formulas in these fragments.

6.1 Comparison

The interleaving-sufficient fragment is larger than the collapse-
sufficient fragment. In contrast, the collapse-sufficient frag-
ment is more efficient to monitor. We explain these two aspects
in more detail.

Intuitively, a collapse-sufficient formula is satisfied either
on all pre-images of a collapse or on none. An interleaving-
sufficient formula is satisfied either on all interleavings or
on none. As the set of all interleavings is a strict subset
of all collapse pre-images, the interleaving-sufficient property
is a weaker requirement than the collapse-sufficient property.
Theorem 6.1 shows that a collapse-sufficient formula is indeed
always also interleaving-sufficient.

Theorem 6.1. If a formula φ is collapse-sufficient then φ is
also interleaving-sufficient.

The converse does not hold. There are interleaving-sufficient
formulas that are not collapse-sufficient. Intuitively, the
interleaving-sufficient formulas allow us to check individual
time points from the original traces, but collapse-sufficient
formulas are restricted to checking the collapsed time points.
For example, the policy that if p happens, then q must
happen at the same time point, formalized as � p → q, is
interleaving-sufficient, but not collapse-sufficient. Inspecting
only collapsed time points still allows us to check that an event
never occurs. That is, �¬p is collapse-sufficient. However,
� p is interleaving-sufficient but not collapse-sufficient.

A practical advantage of the collapse-sufficient fragment is
that monitoring a collapsed temporal structure is more efficient
than monitoring an interleaving, as our case study described
in Section 7 demonstrates. The main reason is that time points
with equal timestamps are merged to a single time point in a
collapsed temporal structure. Hence, the monitor processes the
logged actions with equal timestamps in a single invocation.

The structure of the collapsed log can be further exploited
to increase monitor performance by rewriting the monitored
formulas. In particular, if we are monitoring the collapsed log,
rather than an interleaving, then we can rewrite formulas of
the form �[0,1) φ, �- [0,1) φ, �[0,1) φ, and �- [0,1) φ to φ. The reason
is that in a collapsed trace, there is at most one time point
for each timestamp. We call the rewritten formulas collapse-
optimized.

6.2 Policy Approximation
In Example 4.2, we have seen that we can obtain an
interleaving-sufficient policy by strengthening or weakening
the original policy. We now generalize this observation.

Let φ be a formula in positive normal form. That is,
negations in φ are pushed inside and occur only in front
of atomic formulas. We obtain a weakened formula φw by
replacing each atomic subformula r(t1, . . . , tι(r)) that occurs
positively in φ by �- I �I′ r(t1, . . . , tι(r)), for some intervals I and
I′ with 0 ∈ I ∩ I′. Analogously, in a strengthened formula φs,
we replace each negative occurrence of an atomic subformula
r(t1, . . . , tι(r)) by �- I �I′ r(t1, . . . , tι(r)) for some intervals I, I′.

Theorem 6.2. Let φw and φs be weakened and strengthened
formulas of the formula φ in positive normal form. The
formulas φ→ φw and φs → φ are valid. Moreover,
1. if φs is collapse-sufficient then φ has property (C1), and
2. if φw is collapse-sufficient then φ has property (C2).

Weakened and strengthened formulas are more likely
to be collapse-sufficient, since their subformulas of the
form �- I �I′ r(t1, . . . , tι(r)) can be labeled with (|=∀), while
r(t1, . . . , tι(r)) can only be labeled with the weaker label (|=∃).
Simultaneously weakening and strengthening always results in
a collapse-sufficient formula. However, the resulting formula
does not necessarily relate to the original formula.

Since a collapse-sufficient formula is also interleaving-
sufficient (Theorem 6.1), the above rewriting can also be used
when an interleaving-sufficient formula is desired.

Note that by inserting the temporal operators �- [0,1) and
�[0,1) around positively occurring atomic subformulas, the or-

dering of equally timestamped actions becomes irrelevant. This
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Fig. 7. Nokia’s Data-collection Campaign

is desirable in systems where the clocks used to timestamp
the actions are synchronized but too coarse-grained to capture
the relative ordering of events occurring almost concurrently.
Taking this idea further, by putting temporal operators �- [0,b)
and �[0,b) around these subformulas with b ≥ 1, we take
into account that the timestamps in a temporal structure are
inaccurate and might differ from their actual value by the
threshold b—a situation that occurs in practice.

7 Practical Experience
In this section, we describe the deployment of our monitor-
ing approach within Nokia’s Data-collection Campaign [16],
which is a real-world application with realistic data-usage
policies. Furthermore, we report on the monitor’s performance
and our findings.

7.1 Nokia’s Data-collection Campaign

Scenario. The campaign collects contextual information
from cell phones of about 180 participants. This sensitive
data includes phone locations, call and SMS information,
and the like. The data collected by a participant’s phone is
propagated into the databases db1, db2, and db3. The phones
use WLAN to periodically upload their data to database db1.
Every night, the synchronization script script1 copies the
data from db1 to db2. Furthermore, triggers running on db2
anonymize and copy the data to db3, where researchers can
access and analyze the anonymized data. The participants can
access and delete their own data using a web interface to db1.
Deletions are propagated to all databases: from db1 to db2
by the synchronization script script2, which also runs every
night, and from db2 to db3 by database triggers. Figure 7
summarizes the various data usages.

Within the campaign, data is organized by records and can
easily be identified. When uploading data from a phone into
db1, a unique identifier is generated for each record. This
identifier, together with an identifier of the participant who
contributed the data, is attached to the record.

Policies. The collected data is subject to various policies
that protect the participants’ privacy. For example, there are
access-control policies and policies governing the process
of propagating the data between databases. In particular,
insertions and deletions of data must be propagated within
a given time limit. Furthermore, the latest version of the
synchronization scripts must be used and their running times
are restricted. Finally, access to the databases is restricted

TABLE 1. Policy Formalizations in MFOTL

policy MFOTL formalization
delete �∀user.∀data. delete(user, db2, data)→ user ≈ script2
insert �∀user.∀data. insert(user, db2, data)→ user ≈ script1

select �∀user.∀data. select(user, db2, data)→
user ≈ script1 ∨ user ≈ script2 ∨ user ≈ triggers

update �∀user.∀data.¬update(user, db2, data)

script1

�∀db.∀data. select(script1, db, data) ∨ insert(script1, db, data) ∨
delete(script1, db, data) ∨ update(script1, db, data) →(

(¬ �- [0,1s) �[0,1s) end(script1)) S ( �- [0,1s) �[0,1s) start(script1))
)
∨

�- [0,1s) �[0,1s) end(script1)

runtime �∀script. start(script)→
(¬ �- [0,1s) �[0,1s) end(script)) ∧ �[1s,6h) end(script)

svn �∀script. start(script)→
�- [0,1s) �[0,10s) ∃url.∃rev. svn(script, latest, url, rev)

svn2 �∀script.∀status.∀url.∀rev. svn(script, status, url, rev)→
�- [1s,∞)

(
commit(url, rev′)→ rev′ � rev

)
ins-1-2

�∀user.∀data. insert(user, db1, data) ∧ data 0 unknown →
�- [0,1s) �[0,30h] ∃user′. insert(user′, db2, data)∨

delete(user′, db1, data)

ins-2-3 �∀user.∀data. insert(user, db2, data) ∧ data 0 unknown →
�- [0,1s) �[0,60s) ∃user′. insert(user′, db3, data)

ins-3-2 �∀user.∀data. insert(user, db3, data) ∧ data 0 unknown →
�- [0,60s) �[0,1s) ∃user′. insert(user′, db2, data)

del-1-2

�∀user.∀data. delete(user, db1, data) ∧ data 0 unknown →(
�- [0,1s) �[0,30h) ∃user′. delete(user′, db2, data)

)
∨(

( �[0,1s) �- [0,30h) ∃user′. insert(user′, db1, data))∧
(�- [0,30h) �[0,30h) ¬∃user′. insert(user′, db2, data))

)
del-2-3 �∀user.∀data. delete(user, db2, data) ∧ data 0 unknown →

�- [0,1s) �[0,60s) ∃user′. delete(user′, db3, data)

del-3-2 �∀user.∀data. delete(user, db3, data) ∧ data 0 unknown →
�- [0,60s) �[0,1s) ∃user′. delete(user′, db2, data)

to selected user accounts and the account used by the script
script1 may be used only while the script is running.

We now describe these policies in more detail and present
their formalization in MFOTL. We start with the predicate
symbols used for formalizing the policies. We represent system
actions as elements in relations interpreting the predicate sym-
bols at the time points. The elements of the relations for the
predicate symbols select, insert, delete, and update correspond
to database operations with equally-named SQL commands.
The parameters are the user executing the operation, the name
of the database, and an identifier of the involved data. The
predicate symbols start and stop indicate the starting and
finishing of a synchronization script and include the script’s
name. After the script script1 starts, it logs additional details
about its SVN status using the predicate symbol svn. The
parameters are the script’s name, its SVN status determined
by the command svn status -u -v, the SVN URL, and the
SVN revision number. When the script is the latest version, we
use the value latest for the SVN status. The predicate symbol
commit represents committing a new script version into the
subversion repository. The parameters are the SVN URL and
revision number.

The MFOTL formalization of the policies uses the predicate
symbols just described. The formulas are shown in Table 1.
In the following, we informally state the detailed policies
in natural language and for the more involved policies, we
provide additional explanations:

– delete: Only user script2, representing the synchronization
script script2, may delete data in db2 by executing the SQL
delete command.
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– insert: Only user script1, representing the synchronization
script script1, may insert data in db2 by executing the SQL
insert command.

– select: Only a limited set of users, namely script1, script2,
and triggers, may read data from db2 by executing the SQL
select command.

– update: No SQL update commands are allowed in db2.
– script1: Database operations may be executed under the user

account script1 only while the script script1 is running.
The motivation for this policy is that the account script1
should only be used by the script, so if the account is used
while the script is not running, the account may have been
compromised. The database operation can happen while the
script is running, including when the script starts or finishes.
That is, the time points when an operation happens and
when the script starts or ends may have equal timestamps.
The semantics of the S operator includes the script start, but
excludes the script end. Therefore, the script end is allowed
with the additional disjunct at the end of the formula.

– runtime: The synchronization scripts must run for at least
1 second and for no longer than 6 hours.

– svn, svn2: The synchronization scripts are maintained in
an SVN repository. We require that when started, the
synchronization scripts are the latest version available in
the repository (largest SVN revision number). We use two
different formalizations, svn and svn2. The policy svn uses
the status parameter of the predicate symbol svn. The
policy svn2 compares the revision number parameter of the
predicate symbol svn with the committed revision numbers
obtained from the subversion log via the predicate symbol
commit. For the policy svn we let the logging mechanism
compute the latest revision number, while for the policy
svn2 we compute it using the monitor. Monitoring both
policies allows us to compare how efficiently the monitor
copes with these different formalizations and to observe the
impact of offloading the monitor by doing pre-computations
in the logging mechanisms.

– ins-1-2, ins-2-3, ins-3-2: Data uploaded by the phone into
db1 must be propagated to all databases. In particular,
ins-1-2 requires that data uploaded into db1 must be inserted
into db2 within 30 hours after the upload, unless it has been
deleted from db1 in the meantime. Furthermore, ins-2-3 and
ins-3-2 require that data may be inserted into db2 iff it
is inserted into db3 within 1 minute. The time limit from
db1 to db2 is 30 hours because the synchronization scripts
run once every 24 hours and can run for up to 6 hours.
The time limit from db2 to db3 is only 60 seconds as this
synchronization is implemented by database triggers that
start immediately upon a change in db2. Note that these
policies require propagating new data between db2 and db3
in both directions. However, between db1 and db2 only one
direction is required. The reason is the incomplete logging
for db1.

– del-1-2, del-2-3, del-3-2: Data deleted from db1 must be
consistently deleted from all databases. The policies del-2-3
and del-3-2 are analogous to the policies ins-2-3 and ins-3-2,
respectively. The formalization of the policy del-1-2 is more
involved: If data is deleted from db1, then this data must

also be deleted from db2 within 30 hours. However, if the
data has just been uploaded to db1 and not yet propagated
to db2, then it should not be propagated to db2 in the future
either. Since the propagation would happen within at most
30 hours, we can simply consider the past and the future
30 hours to determine whether data has been or will be
propagated to db2.
Note that all formulas in Table 1 are collapse-sufficient.

However, some policies have slightly weaker or stronger
variants that are not collapse-sufficient. For example, we
obtained ins-2-3 from the policy “all data inserted into db2
must also be inserted into db3 within 60 seconds” by weak-
ening the formula �∀users.∀data. insert(user, db2, data) ∧
data 0 unknown → �[0,60s) ∃user′. insert(user′, db3, data).
Intuitively, ins-2-3 is the policy formalization that does not
distinguish the relative ordering of the insertions into db2
and db3 when they are logged with equal timestamps. This is
because the 1 second timestamp granularity that is used may
not be fine enough: the database triggers may be activated
within milliseconds.

Logging Mechanisms. We extended the data-collection
setup with mechanisms to log policy-relevant actions. We
installed logging mechanisms for the three databases, the
script script1, and the SVN repository, assuming synchronized
clocks for timestamping. The databases’ logging mechanisms
were not straightforward, so we discuss them in more detail.

As logs for the database db1 were not available, we im-
plemented a proxy to inspect interactions of participants and
phones with db1. The proxy logs what data is inserted and
deleted. To observe the insertion of new data, we monitor the
network traffic when the phone uploads data. For deletions,
we use a custom front-end that logs the requests for deleting
data. For practical reasons, we could deploy these mechanisms
only for 2 out of the 180 participants. Hence, we have only
partial logging for db1. However, the partial logging affects
only 2 out of the 14 policies.

The databases db2 and db3 reside physically on a single
PostgreSQL server, which logs the SQL queries. We extract
relevant actions from these PostgreSQL logs. The main chal-
lenge is to determine what data is processed in a query since
only the query itself is logged. Fortunately, most relevant
queries are made by automated scripts or database triggers
and contain enough information to determine what data is
used. For example, an insert or delete query initiated by a
synchronization script includes the identifier of the used data
record. Hence, a simple syntactic analysis of these queries
suffices to log the relevant actions in sufficient detail. When
the analysis failed to extract the data, we identified the data
with the constant unknown.

7.2 Evaluation

Performance. We evaluated the performance of our
monitor on logs from the data-collection campaign. We now
describe the logs, the optimizations we made when monitoring
the logs, and the monitor’s performance.

We monitored all formulas shown in Table 1 on a log
file covering approximately one year of the data-collection
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campaign. We obtained this log file by interleaving logs from
the different log producers to produce one interleaved log that
we subsequently collapsed. Note that all monitored formulas
are collapse-sufficient, so the monitor correctly reports all
violations after inspecting the collapsed log.

We now describe the collapsed log. It contains approxi-
mately 5 million time points and 218 million actions (the
total number of tuples in all relations). The major part consists
of insertions into the three databases: more than 107 million
insertions into db2 and db3 each, and 360,000 insertions into
db1. The smaller number of logged insertions for db1 is due
to the incomplete logging. There are about 3 million select
actions and 700,000 update actions on db2 and db3. All other
types of actions occurred less than 1,000 times in the whole
log.

For comparison, before collapsing, the interleaved log was
larger. It contained approximately 400 million time points and
a similar number of log actions. The collapsing reduced the
number of time points because not all time points in the
interleaving had a unique timestamp. The main reason why
the total number of log actions was decreased by collapsing
is that for most SQL select queries on database db3 we could
not determine what data was used. These were logged as
using unknown data and therefore could not be distinguished
from each other. As there were multiple such indistinguishable
actions logged per time unit (second), they were always
preserved as only one logged action per timestamp.

For the evaluation, we used the MONPOLY tool [14]
running on a desktop computer with an Intel Core i5 2.67 GHz
CPU and 8 GB of RAM. To monitor all policies we made two
optimizations.

The first optimization was collapsing the interleaving. Note
that all monitored formulas are interleaving-sufficient, so the
monitor would correctly report all violations after inspecting
an arbitrary interleaving. However, it turned out that moni-
toring an interleaving was computationally infeasible for four
policies: del-1-2, ins-1-2, ins-2-3, and ins-3-2. Monitoring the
policy del-1-2 exceeded the memory available on our computer
and monitoring the policies ins-1-2, ins-2-3, and ins-3-2 took
too long. For example, monitoring the policy ins-2-3 only on
the first two months of the one year log file took 17 days.
Monitoring the collapsed interleaving was computationally
feasible for all policies. For policies, which we could monitor
already on the interleaving, the monitor was up to three times
faster. However, monitoring ins-1-2 still took a long time,
namely 2 weeks.

The second optimization was rewriting formulas into
collapse-optimized formulas. The time needed to monitor the
policy ins-1-2 improved from 2 weeks to 34 minutes and for
del-1-2 it improved from 69 minutes to 57 minutes. For other
policies, the difference was negligible.

Table 2 shows the monitor’s running times and memory
usage for each policy with the different optimizations. A
missing value in the table signifies that we could not monitor
the policy.

We now report in detail on the performance of the mon-
itor after the two optimizations: monitoring performance-
optimized formulas on the collapsed log. Monitoring invariants

like the policy delete is fast: the monitor needed around 20
minutes. The more complex formulas with temporal operators
were similarly fast when the formulas matched only a small
number of events from the log file. For example, monitoring
the policy svn2 also took less than 20 minutes. Finally, for-
mulas involving temporal operators with large time windows
and matching a large part of the events in the log were the
most expensive ones to monitor. This was the case for the
policies ins-1-2, ins-2-3, and ins-3-2 because the log consists
mainly of insert events. The policies ins-2-3 and ins-3-2 took
49 minutes each. The policy ins-1-2 took only 34 minutes
because there are significantly fewer inserts into db1 than into
db2 or db3. The most expensive policy for monitoring was
del-1-2. It took 57 minutes because its formalization includes
multiple temporal operators with large time windows and the
subformulas of these temporal operators match the abundant
insert events. ins-1-2 has only one such operator.

We monitored the logs offline. That is, we first collected the
complete logs and then monitored them. However, an online
monitoring approach, where the logs are monitored as they
are generated, seems possible because the running times are
orders of magnitude smaller than the time period covered by
the logs.

For comparison, we have also monitored the simple access
control policies on the collapsed log with the Unix tool grep.
The policies update and delete each took only 5 minutes,
which is 3 times faster than the monitor. However, for insert
grep needed 4 hours, which is 10 times slower than the
monitor. We suspect that the automaton used by grep to
represent a regular expression was inefficient in dealing with
the many insert actions.

The monitor’s memory requirements are also modest. For
most policies, the monitor does not require more than 30 MB
of RAM. The only exceptions are ins-1-2 with 1 GB and
del-1-2 with 3.3 GB. Again, the reason is temporal operators
with large time windows matching a large number of log
events.

We now describe in more detail how the monitor coped with
the most difficult policy, del-1-2. The dashed line in Figure 8
shows the monitor’s accumulated running time. The solid line
shows the number of log actions since the beginning of the
log. The steepness of the solid line indicates the amount of
data logged at the corresponding time on the x-axis. We see
several flat parts in this curve. During these flat parts, no logs
were produced due to server migration and upgrades of the
logging infrastructure. We can also see a steep part at the
end of August 2010. A new version of the synchronization
scripts was copying additional data into the databases for
several days. This resulted in an increased number of logged
actions. The running time (dashed line) closely followed the
number of logged actions (solid line), except for a noticeable
slow-down of the monitor during the steep part. The dashed
line in Figure 9 shows the amount of memory used by the
monitor. Most of the time the monitor needed less than 0.5 GB
of memory, but peaked at 3.3 GB at the point where the log
curve was steep. Due to the increased log density, more log
actions fell into the time windows of the temporal operators,
causing the monitor to use larger auxiliary relations. Also note
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TABLE 2. Monitor Performance

collapse, rewritten formulas collapse interleaving
policy running time memory used running time memory used running time memory used
delete 17 min 14 MB 17 min 14 MB 31 min 12 MB
insert 21 min 14 MB 21 min 14 MB 32 min 12 MB
select 17 min 15 MB 17 min 15 MB 34 min 12 MB
update 17 min 14 MB 17 min 14 MB 33 min 12 MB
script1 21 min 14 MB 22 min 14 MB 57 min 13 MB
runtime 18 min 30 MB 19 min 30 MB 52 min 2866 MB
svn 17 min 14 MB 17 min 14 MB 38 min 22 MB
svn2 17 min 14 MB 17 min 14 MB 33 min 12 MB
ins-1-2 34 min 1014 MB 14 days 1387 MB - -
ins-2-3 49 min 20 MB 52 min 20 MB - -
ins-3-2 49 min 15 MB 49 min 15 MB - -
del-1-2 57 min 3313 MB 69 min 3248 MB - -
del-2-3 18 min 14 MB 17 min 14 MB 38 min 26 MB
del-3-2 17 min 14 MB 17 min 14 MB 37 min 12 MB
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Fig. 8. Monitor Running Time on Policy del-1-2

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

2010-08 2010-11 2011-02 2011-05
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

#
lo

g
 t
u
p
le

s

m
e
m

o
ry

 u
s
e
d
 [
G

B
]

log timestamp

#log tuples
memory used

Fig. 9. Monitor Memory Usage on Policy del-1-2

that both the amount of new actions logged and the memory
used by the monitor decreased towards the log’s end. The
campaign ended in 2011 and the participants gradually stopped
contributing data towards the campaign’s end.

Findings. To our surprise, the monitor reported a number
of policy violations. First, some access control policies like

delete were violated. These violations were due to testing,
debugging, and other improvement activities going on while
the system was running. Second, the policy runtime was vio-
lated several times, such as when synchronizing the databases
after the server migration. Third, an earlier version of one
of the synchronization scripts contained a bug, which was not
detected in previous tests. Only a subset of the insertions were
propagated between the databases. Fourth, while the campaign
was running, the infrastructure was migrated to another server.
After the migration, the deployment of the scripts was delayed,
which caused policy violations.

Overall, the main reason for these violations is that we
monitored an experimental system still under development.
It is worth pointing out that the privacy of the participants
was guaranteed at all times during the campaign and no data
elements were unintendedly lost. However, as this case study
shows, the monitor can be a powerful debugging tool. For
commercial systems, it can detect policy violations thereby
protecting the users’ privacy and increasing users’ trust in the
systems. Our findings also show that policy monitoring makes
sense even in systems where users and system administrators
are honest and interested in honoring the policies.

8 RelatedWork
Various algorithms have been presented for efficiently mon-
itoring system behavior by inspecting totally ordered logs
[6]–[10]. The monitor [10], [14] used in this work extends
Chomicki’s monitor [22] and can be directly used to monitor
a single system component or a log file. A broader overview
on the state of the art of monitoring distributed systems can
be found in the survey by Goodloe and Pike [23].

Sen et al. [24] present a distributed monitoring approach,
where multiple monitors which communicate with each other
are implemented locally. The authors use a propositional past
linear-time distributed temporal logic with epistemic opera-
tors [25] that reflect the local knowledge of a process. The
semantics of temporal operators in this logic is defined with
respect to a partial ordering, the causal ordering [26] com-
monly used in distributed systems. Their logic therefore does
not allow one to express temporal constraints on events that
are not causally related. Policies are defined with respect to the
local view point of a single process and checked with respect
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to these view points, using the last known states of other
processes. Thus two processes can reach different verdicts
as to whether a property is satisfied or violated. This is in
contrast to our approach where the semantics of the temporal
operators is defined with respect to a total ordering and a
single central monitor determines whether a global property
holds. In addition, note that distributed monitoring entails
communication overhead between the monitors whereas we
must merge distributed logs.

Genon et al. [19] present a monitoring algorithm for propo-
sitional LTL, where events are partially ordered. Whereas we
restrict ourselves to formulas for which monitoring a single
interleaving is sufficient, their approach checks a formula on
all interleavings using symbolic exploration methods. These
methods can decrease the number of interleavings considered
but, in the worst case, exponentially many must still be
examined. Furthermore, it is unclear how their algorithm for
the propositional setting extends to a timed and first-order
setting.

Wang et al. [27] consider a problem similar to that of
Genon et al. [19]. Their monitoring algorithm for past-only
propositional LTL with a three-valued semantics explicitly
explores the possible interleavings of a partially ordered trace.
Matching our notion of strong violations (Definition 3.2(2)),
their algorithm returns the truth value false only if the formula
is violated on all interleavings. However, their algorithm is
not complete in the sense that it might return an inconclusive
answer, represented as the third truth value, although all
possible interleavings violate the given formula. The third
truth value is also returned if some interleavings violate the
formula and others satisfy it. Note that in our approach, the
formulas in the syntactically-defined fragments either satisfy
all interleavings or violate all interleavings.

Several monitoring approaches [28]–[30] have been pro-
posed where actions logged with equal timestamps are consid-
ered to happen simultaneously. This corresponds to defining
their semantics with respect to the collapsed log in our setting
and thereby restricting the expressiveness of the policy spec-
ification language. Therefore different possible interleavings
need not be considered and the monitoring can be more
efficient. We discuss examples below.

Bauer et al. [29] assume a setting where system actions
are totally ordered, thereby abstracting away distributivity and
concurrency. In their setting, system requirements are given in
a propositional linear-time temporal logic. Their monitoring
architecture additionally includes a component that analyzes
the cause of a failure, which is fed back into the system.

Bauer and Falcone [28] assume synchronized clocks and
that observations of the system are done simultaneously in
lock-step. This leads to a totally ordered trace of system
actions, which corresponds to the collapsed log in our set-
ting. They present a distributed monitoring algorithm for
propositional future linear-time temporal logic where monitors
are distributed throughout the system and exchange partially
evaluated formulas between each other. Each monitor eval-
uates the subformulas for which it can observe the relevant
system actions. Note that their monitoring algorithm is based
on rewriting of formulas so, technically speaking, partially

rewritten formulas are exchanged.
Zhou et al. [30] check policies against a totally ordered

log with exactly one time point per timestamp. Again, this
corresponds to the collapsed log in our setting. The authors
present a distributed monitoring framework aimed at monitor-
ing properties of network protocols specified in a declarative
language based on Datalog. The monitored properties are
translated into this language and the monitoring algorithm is
executed together with the network protocols.

Mazurkiewicz traces [31] provide an abstract view on par-
tially ordered logs. With this view, the problem of checking
whether a policy is strongly violated on a partially ordered
log can be stated as checking whether all linearizations of
a Mazurkiewicz trace satisfy a temporal property. We are not
aware of any work that solves this problem by inspecting a sin-
gle sequence representing all linearizations. In Mazurkiewicz
traces, an independence relation on actions specifies which ac-
tions can be reordered. This is independent of the timestamps
of actions, whereas in our setting the possibility of reordering
depends on the timestamp and not the action.

Also related to our work is partial-order reduction [32].
Partial-order techniques aim at reducing the number of in-
terleavings that are sufficient for checking whether a temporal
property is satisfied on all possible interleavings. Partial-order
reduction techniques have successfully been used in finite-
state model checking where one checks all possible system
executions. In contrast, we check compliance of all lineariza-
tions of a single observed system execution. Nevertheless,
our approach for the interleaving-sufficient fragment can be
seen as a special case of partial-order reduction. Namely,
we restrict the logical formulas so that it is sufficient to
inspect a single interleaving to determine compliance of all
possible interleavings. For the collapse-sufficient fragment, we
additionally compress the inspected interleaving.

9 Conclusion
We offer a solution to monitor the usage of data in con-
current distributed systems. In particular, we show the in-
tractability of monitoring an arbitrary linear-time temporal
logic formula on partially ordered logs and we identify two
fragments, which can be monitored efficiently by inspecting
representative traces. We also show that membership of a
formula in the semantically-defined fragments is undecidable
(Theorems 4.3 and 5.2) and we approximate them with
sound, but incomplete, syntactically-defined fragments (The-
orems 4.6 and 5.6). Finally, we deploy and evaluate our
monitoring architecture in a real-world application. Our case
study demonstrates the feasibility and benefits of monitoring
the usage of sensitive data.

As future work, we plan to develop monitoring techniques
for more complex systems with more agents, actions, and
databases. The challenges will be to handle less accurate
and less complete logging, and to provide monitoring algo-
rithms that scale up from millions to billions of log entries
per day. Our future work also includes developing monitoring
techniques that can be used for policy enforcement, that is,
preventing policy violations.
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1 Rewrite ¬ψ; proceed only if rewritten formula φ is in the monitorable
fragment of MFOTL.

2 ` ← 0
3 i← 0
4 Q←

{(
α, 0,wait(α)

) ∣∣∣ α is a temporal subformula of φ
}

5 loop
6 forall (α, j, ∅) ∈ Q do
7 Build auxiliary relation for α and time point j using the

auxiliary relations for the temporal subformulas of α at time
point j − 1, if j > 0.

8 while all auxiliary relations for time point i are built do
9 Evaluate φ at time point i by using the auxiliary relations for

time point i; output violations together with timestamp τi.
10 If i > 0, discard all relations for time point i − 1.
11 i← i + 1

12 Q←
{(
α, ` + 1,wait(α)

) ∣∣∣ α is a temporal subformula of φ
}
∪{(

α, j,
⋃
α′∈up(S ,τ`+1−τ`) wait(α′)

) ∣∣∣ (α, j, S ) ∈ Q and S , ∅
}

13 ` ← ` + 1

Fig. 10. The monitoring algorithm Mψ

Appendix A
Monitoring Algorithm
Figure 10 presents our monitoring algorithm Mψ. In the follow-
ing, we briefly describe Mψ’s operation. A detailed description
is given in [10].

Mψ first rewrites the negation of ψ. Heuristics are used
that try to rewrite ¬ψ into a formula φ that satisfies certain
syntactic criteria that guarantee temporal-subformula-domain-
independence. If these criteria are not satisfied, then Mψ

stops. For monitoring, Mψ uses two counters ` and i. The
counter ` is the index of the current element (D`, τ`) in
the input sequence (D0, τ0), (D1, τ1), . . . , which is processed
sequentially. Initially, ` is 0 and it is incremented with each
loop iteration (lines 5–13). The counter i is the index of the
next time point i (possibly in the past, from `’s point of view)
that is checked for violations, i.e., the next time point for which
the monitor outputs the assignments satisfying φ.

The evaluation is delayed until all auxiliary relations for
the temporal subformulas of φ are built (lines 8–11), i.e.,
subformulas of φ where the outermost connective is one of
the temporal operators d- I , d

I , SI , or UI . Furthermore, Mψ uses
the list1 Q to ensure that the auxiliary relations for the time
points are built at the right time: if (α, j, ∅) is an element of Q
at the beginning of a loop iteration, enough time has elapsed to
build the auxiliary relations for the temporal subformula α and
time point j. Without loss of generality, we assume that each
temporal subformula α occurs only once in φ. Mψ initializes Q
in line 4. The function wait identifies the subformulas that
delay the formula evaluation:

wait(α) :=



wait(β) if α = ¬β, α = ∃x. β, or
α = d- I β,

wait(β) ∪ wait(γ) if α = β ∨ γ or α = β SI γ,
{α} if α = d

I β or α = β UI γ,
∅ otherwise.

1. We abuse notation by using set notation for lists. Moreover, we assume
that Q is ordered so that (α, j, S ) occurs before (α′, j′, S ′), whenever α is a
proper subformula of α′, or α = α′ and j < j′.

The list Q is updated in line 12 before we increment ` in
line 13 and start a new loop iteration. The update adds a new
tuple (α, ` + 1,wait(α)) to Q, for each temporal subformula α
of φ, and it removes tuples of the form (α, j, ∅) from Q.
Moreover, for tuples (α, j, S ) with S , ∅, the set S is updated
using the functions wait and up, accounting for the elapsed
time to the next time point, that is, τ`+1 − τ`. For a set of
formulas U and t ∈ N, up(U, t) is the set

{β | dI β ∈ U} ∪
{β U[max{0,b−t},b′−t) γ | β U[b,b′) γ ∈ U, with b′ − t > 0} ∪
{β | β U[b,b′) γ ∈ U or γ U[b,b′) β ∈ U, with b′ − t ≤ 0} .

In line 7, we build the auxiliary relations for which enough
time has elapsed, that is, the relations for α at time point j
with (α, j, ∅) ∈ Q. To efficiently build these relations, we
use incremental constructions that reuse relations from the
previous time point. In lines 8–11, if all the relations for
time point i have been built, then Mψ outputs the valuations
violating φ at time point i together with the timestamp τi.
Furthermore, after each output, the relations at time point i−1
are discarded (if i > 0) and i is incremented.

Appendix B
Additional Proof Details
In this appendix we provide additional proof details for the
assertions made in this paper.

B.1 Intractability

In this section, we show the correctness of Theorem 3.3 about
the intractability of checking weak and strong violations.

Membership. The decision problem in Theorem 3.3(1) is
in NP as a nondeterministic Turing machine can first guess
the violating interleaving up to the given time point and then
verify its guess in polynomial time [33]. Note that the Turing
machine does not need to guess a valuation, as the input
formula is a quantifier-free sentence and thus contains no
variables. The decision problem in Theorem 3.3(2) is in coNP
since its complement is in NP.

Hardness. Hardness of the decision problem in Theo-
rem 3.3(1) is established by polynomially reducing SAT to
it. Analogously, the coNP-hardness of the decision problem
in Theorem 3.3(2) is shown by polynomially reducing TAUT
to it.

Reduction from SAT. We show NP-hardness of the de-
cision problem in Theorem 3.3(1) by a reduction from SAT.
The SAT problem asks whether a given propositional formula
is satisfiable. SAT is NP-hard.

To fix notation, we recall that a propositional formula α
over a set of atomic propositions P is satisfiable if there is
an assignment θ of propositions to truth values ⊥ (denoting
false) and > (denoting true), that is, θ : P→ {⊥,>}, such that
θ(α) = >, where θ is homomorphically extended from atomic
propositions to formulas.

Suppose P = {p0, . . . , pn−1}, with n ≥ 0, is a set of atomic
propositions. Let S be the signature (C,R, ι) with C = {c}, R =

{q0, r0, . . . , qn−1, rn−1}, and ι(qi) = ι(ri) = 1, for any 0 ≤ i < n.
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The two temporal structures (D̄1, τ̄1) and (D̄2, τ̄2) over S are
given by |D̄| = {c}, cD̄ = c, τ1

i = τ2
i = i, and

q
Dk

j

i =

{
{c} if k = 1 and i = j,
∅ otherwise,

r
Dk

j

i =

{
{c} if k = 2 and i = j,
∅ otherwise,

for any i ∈ N, k ∈ {1, 2}, and i, j ∈ N with 0 ≤ i < n,
Given a propositional formula α over P, the MFOTL

formula pαq is obtained by replacing each occurrence of a
proposition pi in α with �-

(
ri(c) ∧ �- qi(c)

)
. Thus, given a

propositional formula α, the reduction constructs the two
prefixes of length n of (D̄1, τ̄1) and (D̄2, τ̄2) and the MFOTL
formula pαq. This reduction is linear in the length of α. Its
correctness is shown by Lemma B.2. The following remarks
and lemma will be needed.
Remark 1. For any interleaving (D̄, τ̄) ∈ (D̄1, τ̄1) ./(D̄2, τ̄2), the
functions f1 and f2 in Definition 3.1 satisfy fk(i) ∈ {2i, 2i + 1}
where k ∈ {1, 2}. Moreover, these functions are unique, that is,
if g1, g2 : N → N are strictly monotonic functions satisfying
conditions (1)–(3) in Definition 3.1, then either g1 = f1 and
g2 = f2, or g1 = f2 and g2 = f1. Furthermore, for any strictly
monotonic functions f1 and f2 satisfying conditions (1) and (2)
in Definition 3.1 and with f1(i), f2(i) ∈ {2i, 2i+1} for 0 ≤ i < n,
there is a unique temporal structure (D̄, τ̄) such that f1 and f2
also satisfy condition (3). In other words, the functions f1 and
f2 determine an interleaving of (D̄1, τ̄1) and (D̄2, τ̄2).

Lemma B.1. Let α be a propositional formula, θ a truth
value assignment, v a valuation, and (D̄, τ̄) an interleaving
of (D̄1, τ̄1) ./ (D̄2, τ̄2) given by the functions f1 and f2 such
that θ(pi) = > iff f1(i) = 2i, for any i with 0 ≤ i < n. Then
θ(α) = > iff (D̄, τ̄, v, 2n) |= pαq.

Proof: We use structural induction on the form of α. The
only interesting case is the base case; the other cases follow
directly from the induction hypotheses. Thus let α = pi ∈ P.

Suppose that (D̄, τ̄, v, 2n) |= �- (ri(c)∧ �- qi(c)). That is, there
is a time point j ≤ 2n such that (D̄, τ̄, v, j) |= ri(c) and such that
there is a time point j′ ≤ j for which (D̄, τ̄, v, j′) |= qi(c). Then
c ∈ rD j

i and c ∈ qD j′

i . From the definition of an interleaving and
the definitions of the interpretations of the predicate symbols
qi and ri, it follows that j = f2(i) and j′ = f1(i). Then, as
f1(i), f2(i) ∈ {2i, 2i + 1}, f1(i) , f2(i), and j′ ≤ j, we have that
f1(i) = 2i and f2(i) = 2i + 1. Thus θ(pi) = >.

Suppose that θ(α) = >. Then f1(i) = 2i and f2(i) = 2i + 1.
We have (D̄, τ̄, v, 2i) |= qi(c) and (D̄, τ̄, v, 2i + 1) |= ri(c). Thus
(D̄, τ̄, v, 2i + 1) |= ri(c) ∧ �- qi(c) and clearly (D̄, τ̄, v, 2n) |=
�-
(
ri(c) ∧ �- qi(c)

)
.

Lemma B.2. Let α be a propositional formula. It holds that
α is satisfiable iff (D̄1, τ̄1) ./ (D̄2, τ̄2) weakly violates ¬pαq at
time point 2n.

Proof: Suppose first that α is satisfiable. Then there is a
truth value assignment θ such that θ(α) = >. Let (D̄, τ̄) be the
interleaving determined by the functions f1 and f2 given by

f1(i) =

{
2i if θ(pi) = >,
2i + 1 otherwise,

and

f2(i) =

{
2i if θ(pi) = ⊥,
2i + 1 otherwise.

Let v be an arbitrary valuation. From Lemma B.1, we obtain
that (D̄, τ̄, v, 2n) |= pαq, that is, (D̄, τ̄, v, 2n) 6|= ¬pαq.

Suppose now that (D̄1, τ̄1) ./ (D̄2, τ̄2) weakly violates ¬pαq
at time point 2n. Then there is an interleaving (D̄, τ̄) and a
valuation v such (D̄, τ̄, v, 2n) 6|= ¬pαq. Let f1 and f2 be the
functions determined by (D̄, τ̄) as in Definition 3.1. Let θ be a
truth value assignment such that θ(pi) = > if f1(i) = 2i. Using
again Lemma B.1, we get that θ is a satisfying assignment
for α.

Reduction from TAUT. We show coNP-hardness of the
decision problem in Theorem 3.3(2) by reduction from TAUT.
The TAUT problem asks whether a given propositional for-
mula is a tautology. TAUT is coNP-hard.

We recall that a propositional formula α over a set of atomic
propositions P is a tautology if θ(α) = > for any assignment θ
of propositions to truth values.

We use the same reduction that was used in the decision
problem in Theorem 3.3(1). The correctness of the reduction
follows from the following lemma.

Lemma B.3. Let α be a propositional formula. Then α is a
tautology iff (D̄1, τ̄1) ./ (D̄2, τ̄2) strongly violates ¬pαq at time
point 2n.

Proof: Suppose first that α is a tautology. Let (D̄, τ̄)
be an arbitrary interleaving in (D̄1, τ̄1) ./ (D̄2, τ̄2) and f1 and
f2 be functions as in Definition 3.1. Let θ be a truth value
assignment such that θ(pi) = > iff f1(i) = 2i. Let v be
an arbitrary valuation. Using Lemma B.1, we obtain that
(D̄, τ̄, v, 2n) 6|= ¬pαq. Hence (D̄1, τ̄1) ./(D̄2, τ̄2) strongly violates
¬pαq at time point 2n.

Suppose now that (D̄1, τ̄1) ./ (D̄2, τ̄2) strongly violates ¬pαq
at time point 2n. Let θ be an arbitrary truth value assignment.
Let (D̄, τ̄) be the interleaving determined by the functions f1
and f2 given by

f1(i) =

{
2i if θ(pi) = >,
2i + 1 otherwise,

and

f2(i) =

{
2i if θ(pi) = ⊥,
2i + 1 otherwise.

There is a valuation v such (D̄, τ̄, v, 2n) 6|= ¬pαq. Using again
Lemma B.1, we have that θ is a satisfying assignment for α.
Hence α is a tautology.

B.2 Undecidability

In this section, we prove Theorem 4.3 and Theorem 5.2
claiming that the checking whether a formula is interleaving-
sufficient and collapse-sufficient is undecidable. In the proofs,
we restrict ourselves without loss of generality to FOTL
formulas, that is, MFOTL formulas where the temporal op-
erators do not have any metric constraints. We first show the
undecidability of the tautology problem for FOTL. We use this
in the proofs afterwards.
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Lemma B.4. Given a FOTL formula φ, it is undecidable
whether φ is a tautology.

Proof: We reduce the halting problem of a deterministic
Turing machine (DTM) with the empty word as input to the
FOTL tautology problem. We first introduce notation for a
DTM and then proceed with the reduction.

Different types of Turing machines are used in the literature,
so we briefly describe the one we use. For a more detailed
introduction to Turing machines, see [34]. Our DTM has a
tape and a head to read and write the tape. The tape consists
of cells and is infinite in both directions. The cells of the tape
are indexed with the indexes coming from Z. A single tape
symbol is written in each cell. Initially, the input to the DTM
is written on the tape starting at cell 0. The rest of the tape is
filled with the blank symbol. We consider only the empty word
as input, so the whole tape is filled with the blank symbol. The
head of the DTM is initially positioned at cell 0.

The DTM is always in one of finitely many states and
executes in steps. In each step, the DTM reads the symbol
on the tape at the cell where the head is positioned, writes a
new symbol into the cell, moves the head to the left, right, or
not at all, and finally, the DTM may make a transition into a
new state. When the DTM reaches a final state, it continues to
loop forever in this state, always writes the same symbol onto
the tape, and does not move the head. We say that it halts.

Formally, the DTM is described by a tuple
(Q,Γ,Σ, δ, q0, B, F), where
• Q is the finite set of states in which the DTM can be.
• Γ is the finite set of tape symbols.
• Σ ⊆ Γ is the finite set of input symbols.
• δ : Q × Γ → Q × Γ × {left, right, none} is the transition

function. The arguments of δ(q, x) are a state q in which
the DTM is and a symbol x read from the tape where the
head is positioned. The value of δ(q, x) is a triple (p, y, d),
where:
– p is the next state into which the DTM transitions.
– y is the symbol to be written in the cell where the head

is positioned.
– d is left, right, or none indicating whether the head

should move to the left, to the right, or not move at
all, respectively.

• q0 ∈ Q is the initial state of the DTM.
• B ∈ Γ \ Σ is the blank symbol.
• F ⊆ Q is the set of final states.
To ensure that the DTM loops in final states, δ(q, x) =

(q, x, none) for all q ∈ F and all x ∈ Γ.
We now reduce the undecidable problem of deciding

whether a DTM halts on the empty word to the problem of
deciding whether a FOTL formula is unsatisfiable. To describe
a run of the DTM we use the following predicate symbols:
• H(i) iff the head is positioned at cell i.
• Tx(i) iff the tape contains symbol x, other than the blank

symbol, at position i.
• Iq iff the DTM is in state q.
To check for an empty symbol at position i on the tape, we

use the syntactic sugar TB(i) :=
∧

x∈Γ\{B} ¬Tx(i).

We represent positions on the tape with an index i ∈ Z. The
left-most symbol of the input is at position 0, where also the
head is initially positioned.

We also need a successor function on Z. We define it as

S(i, j) := i ≺ j ∧ ∀k. (k ≺ i ∨ k ≈ i ∨ k ≈ j ∨ j ≺ k) .

We describe a non-halting run of the DTM M with the
FOTL formula

ρM := �WELLFORMED ∧ ( �- INIT) ∧ STEP ∧ ¬FINAL ,

where its subformulas are as follows:
• WELLFORMED ensures that the DTM is in a proper

configuration. We define it as

WELLFORMED :=
(
∀i.∀ j.H(i) ∧ H( j)→ i ≈ j

)
∧(

∀i.
∧
x,y∈Γ

(
Tx(i) ∧ Ty(i)→ x ≈ y

))
∧∧

p,q∈Q

(
Ip ∧ Iq → p ≈ q

)
.

It ensures that the head is positioned at exactly one tape
cell, that there is exactly one symbol written on each tape
cell, and that the DTM is in exactly one state.

• INIT describes the initial configuration of the DTM. We
define it as

INIT := H(0) ∧ Iq0 ∧ ∀i.TB(i) .

Note that we consider only the empty word as the input,
so the whole tape is initially filled with the blank symbol.

• STEP describes one step of the DTM. Let the tuples
(q, x, p, y, d) represent the transition function δ where
(p, y, d) = δ(q, x). STEP is a conjunction of formulas
representing all those tuples. For tuples with d = left,
the formula is

∀i.∀ j. Iq ∧ H( j) ∧ Tx( j) ∧ S(i, j)→ dIp ∧ H(i) ∧ Ty( j) .

For tuples with d = right, the formula is

∀i.∀ j. Iq ∧ H(i) ∧ Tx(i) ∧ S(i, j)→ dIp ∧ H( j) ∧ Ty(i) .

For tuples with d = none, the formula is

∀i. Iq ∧ H(i) ∧ Tx(i)→ dIp ∧ H(i) ∧ Ty(i) .

In addition, the conjunction also contains the formula

∀i.∀ j.
∧
z∈Γ

(
H(i) ∧ i 0 j ∧ Tz( j)→ dTz( j)

)
expressing the fact that the tape can change only at the
position where the head is positioned.

• FINAL describes the DTM entering a final state. We
define

FINAL :=
∨
q∈F

Iq .

Every configuration of the DTM M in a run is represented
by a time point in the model of the FOTL formula ρM . Note
that this is a valid MFOTL model. At any step it holds that M
has written at most a finite number of cells on the tape, so the
relations of the predicate symbols Tx for x ∈ Γ\{B} are always
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finite. There is no predicate symbol to directly represent the
blank symbol.

The DTM M does not halt if there is a model where ρM is
satisfied. Since the formula ρM can be effectively constructed
from the description of M, the undecidability of the halting
problem implies the undecidability of the unsatisfiability prob-
lem for FOTL formulas. By considering the negation of a
FOTL formula, it follows that the tautology problem is also
undecidable.

Next, we prove Theorem 4.3, claiming that the interleaving-
sufficient property is undecidable.

Proof: From Lemma B.4 we know that the problem
whether a FOTL formula φ is a tautology is undecidable.
Hence, also determining whether φ is unsatisfiable is an
undecidable problem. We proceed by reducing the problem
of deciding whether φ is unsatisfiable to deciding whether φ
is interleaving-sufficient. To this end, we show the following
equivalence: φ is unsatisfiable iff the formula φ ∧ � p → �- q
is interleaving-sufficient, where the predicate symbols p and
q do not occur in φ.

Note that if φ falls into the fragment of MFOTL that we can
monitor, then it is of the form �ψ. The formula φ∧� p→ �- q
can then be rewritten to �ψ ∧ (p→ �- q) and hence also falls
into the fragment of MFOTL that we can monitor.

We first show the direction from left to right. As φ is
unsatisfiable, φ ∧ � p → �- q is unsatisfiable. Hence, it is
interleaving-sufficient.

Next, we show the direction from right to left and prove
that if φ is satisfiable then φ ∧ � p→ �- q is not interleaving-
sufficient. If φ is satisfiable, there is a temporal structure (D̄, τ̄)
on which φ is satisfied. As φ’s temporal operators do not
have any temporal constraints, we can pick τ̄ so that the first
two time points have an equal timestamp. That is, τ0 = τ1.
Furthermore, because the predicate symbols p and q do not
occur in the formula φ, we can pick D̄ in so that the predicate
symbol q is satisfied only at the first time point and the
predicate symbol p is satisfied only at the second time point.
That is, (D̄, τ̄, v, 0) |= q, but (D̄, τ̄, v, i) 6|= q, for all i , 0 and any
valuation v. Similarly, (D̄, τ̄, v, 1) |= p, but (D̄, τ̄, v, i) 6|= p, for
all i , 1. Clearly, this temporal structure satisfies our formula,
that is, (D̄, τ̄, v, 0) |= φ ∧ � p→ �- q.

Let (D̄1, τ̄1) and (D̄2, τ̄2) be two temporal structures such
that (D̄, τ̄) ∈ (D̄1, τ̄1) ./ (D̄2, τ̄2) and for all i ∈ N we have that
(D̄1, τ̄1, v, i) 6|= q and (D̄2, τ̄2, v, i) 6|= p. Clearly, there is another
interleaving (D̄′, τ̄′) ∈ (D̄1, τ̄1) ./ (D̄2, τ̄2), where the first two
time points are in the opposite order as in (D̄, τ̄). That is, p
is satisfied only on the first time point and q is satisfied only
on the second time point. Then (D̄′, τ̄′, v, 0) 6|= � p→ �- q and
(D̄′, τ̄′, v, 0) 6|= φ ∧ � p → �- q. As the formula φ ∧ � p → �- q
is satisfied on one interleaving, but not on another one, the
formula is not interleaving-sufficient.

The proof of Theorem 5.2, claiming that the collapse-
sufficient property is undecidable, is analogous to the
interleaving-sufficient case. We omit it.

B.3 Labeling Rules (Interleaving)
In this section, we show the correctness of Lemma 4.5, that
is, the soundness of the labeling rules shown in Figure 4.

Proof: We proceed by induction on the size of the deriva-
tion tree assigning label ` to φ. We make a case distinction
based on the rule applied to label the formula, that is, the rule
at the tree’s root. However, for clarity, we generally group
cases by the formula’s form.

For readability, and without loss of generality, we already
fix two arbitrary interleavings (D̄, τ̄) and (D̄′, τ̄′) of two given
temporal structures. We also fix an arbitrary valuation v, an
arbitrary time point i in (D̄, τ̄), and the time point i′ in (D̄′, τ̄′)
corresponding to the time point i.

We first consider the weakening rule. Suppose that
(D̄, τ̄, v, i) |= φ. By the induction hypothesis, φ has the
property ALL, so for all time points j ∈ N with τi = τ′j we
have that (D̄′, τ̄′, v, j) |= φ. But then the time point i′ is among
those j’s, so (D̄′, τ̄′, v, i′) |= φ and φ has the property ONE.

Next, we make a case distinction on the form of the formula.
Consider formulas of the form:
• t ≈ t′, where t and t′ are variables or constants. Suppose

that (D̄, τ̄, v, i) |= t ≈ t′. It follows that v(t) = v(t′). As this
only depends on the valuation v, we have (D̄′, τ̄′, v, j) |=
t ≈ t′ for all j ∈ N and hence we can add the label ALL
to the formula t ≈ t′.

• t ≺ t′, where t and t′ are variables or constants. This case
is similar to the previous one.

• r(t1, . . . , tι(r)) , where t1, . . . , tι(r) are variables or constants.
Suppose that (D̄, τ̄, v, i) |= r(t1, . . . , tι(r)). As i′ is the time
point corresponding to i, it follows that rDi = rD

′

i′ . Hence,
(D̄′, τ̄′, v, i′) |= r(t1, . . . , tι(r)) and r(t1, . . . , tι(r)) has the
property ONE.

• ¬φ

– We first show why the label ONE can be propagated.
Suppose that φ : ONE and (D̄, τ̄, v, i) |= ¬φ, from which
it follows that (D̄, τ̄, v, i) 6|= φ. We claim that from φ :
ONE it follows that (D̄′, τ̄′, v, i′) 6|= φ. To achieve a
contradiction, suppose that (D̄′, τ̄′, v, i′) |= φ. By the
induction hypothesis, φ has the property ONE, so it
follows that (D̄, τ̄, v, i) |= φ, which is a contradiction.
Hence, (D̄′, τ̄′, v, i′) 6|= φ, so that (D̄′, τ̄′, v, i′) |= ¬φ and
¬φ has the property ONE.

– Next we show why the label ALL can be propagated.
Suppose that φ : ALL and (D̄, τ̄, v, i) |= ¬φ, from
which it follows that (D̄, τ̄, v, i) 6|= φ. We claim that
from φ : ALL it follows that (D̄′, τ̄′, v, j) 6|= φ for
all j ∈ N with τi = τ′j. To achieve a contradiction,
suppose that (D̄′, τ̄′, v, k) |= φ for some k with τi = τ′k.
By the induction hypothesis, φ has the property ALL,
so it follows that (D̄, τ̄, v, `) |= φ for all ` ∈ N with
τ` = τ′k = τi and hence (D̄, τ̄, v, i) |= φ, which is
a contradiction. Therefore, (D̄′, τ̄′, v, j) 6|= φ, so that
(D̄′, τ̄′, v, j) |= ¬φ and ¬φ has the property ALL.

• φ ∨ ψ

– We first show why the label ONE can be propagated.
Suppose that φ : ONE, ψ : ONE, and (D̄, τ̄, v, i) |=
φ∨ψ. It follows that 1) (D̄, τ̄, v, i) |= φ or 2) (D̄, τ̄, v, i) |=
ψ. If 1), then by the induction hypothesis φ has the
property ONE and it follows that (D̄′, τ̄′, v, i′) |= φ. If
2), then by the induction hypothesis ψ has the property



BASIN et al.: MONITORING DATA USAGE IN DISTRIBUTED SYSTEMS 19

ONE and it follows that (D̄′, τ̄′, v, i′) |= ψ. Therefore,
in both cases we have that (D̄′, τ̄′, v, i′) |= φ ∨ ψ, so φ
has the property ONE.

– The argument why the label ALL can be propagated is
analogous.

• ∃x. φ
– We first show why the label ONE can be propagated.

Suppose that φ : ONE and (D̄, τ̄, v, i) |= ∃x. φ. It
follows that (D̄, τ̄, v[x/d], i) |= φ, for some d ∈ |D̄|.
Since |D̄| = |D̄′|, d is also in |D̄′|. By the induc-
tion hypothesis, φ has the property ONE, and hence
(D̄′, τ̄′, v[x/d], i′) |= φ and (D̄′, τ̄′, v, i) |= ∃x. φ. There-
fore, ∃x. φ has the property ONE.

– The argument why the label ALL can be propagated is
analogous.

• φ SI ψ. Suppose that φ : ALL, ψ : ALL, and (D̄, τ̄, v, i) |=
φSI ψ. It follows that there is a j ≤ i such that τi−τ j ∈ I,
(D̄, τ̄, v, j) |= ψ, and (D̄, τ̄, v, k) |= φ for all k with j <
k ≤ i. By the induction hypothesis, ψ has the property
ALL. It follows that (D̄′, τ̄′, v, j) |= ψ for all time points
j′ with τ j = τ′j′ . Let j′max be the largest of such j′. By
the induction hypothesis, φ also has the property ALL. It
follows that (D̄′, τ̄′, v, k′) |= φ for all k′ with τ′j′max

< τ′k′ ≤
τ′i′ . Hence, for every time point i′′ with τ′i′′ = τ′i′ there is
a j′ ≤ i′′ such that τ′i′′ − τ

′
j′ ∈ I, (D̄′, τ̄′, v, j′) |= ψ, and

(D̄′, τ̄′, v, k′′) |= φ for all k′′ with j′′ < k′′ ≤ i′′. Therefore,
(D̄′, τ̄′, v, k′) |= φ SI ψ and φ SI ψ has the property ALL.

• φ UI ψ. This case is similar to the previous one.
• �- I φ with 0 < I.

Suppose that φ : ONE and (D̄, τ̄, v, i) |= �- I φ. There is
then a time point j with j ≤ i, τi − τ j ∈ I such that
(D̄, τ̄, v, j) |= φ. By the induction hypothesis, φ has the
property ONE. It follows that there is a time point j′ in
(D̄′, τ̄′) corresponding to j with (D̄′, τ̄′, v, j′) |= φ. From
0 < I it follows that τ j < τi, so that τ′j′ < τ′i′ , and
hence j′ < i′′ for all i′′ ∈ N with τi = τ′i′′ . Therefore,
(D̄′, τ̄′, v, i′′) |= �- I φ for all such i′′ and �- I φ has the
property ALL.

• �I φ with 0 < I. This case is similar to the previous one.
• �I �- J φ.

Suppose that φ : ONE and (D̄, τ̄, v, i) |= �I �- J φ, so there
are time points j and k with j ≥ i, τ j − τi ∈ I, k ≤
j, τ j − τk ∈ J, and (D̄, τ̄, v, k) |= φ. By the induction
hypothesis, φ has the property ONE, so there is a time
point k′ in (D̄′, τ̄′) corresponding to k with (D̄′, τ̄′, v, k′) |=
φ. To satisfy the formula �I �- J φ on (D̄′, τ̄′) we pick the
maximal j′ with τ′j′ = τ j. To see that this satisfies the
formula we need to show that 1) j′ ≥ i′, 2) τ′j′ − τ

′
i′ ∈ I,

3) k′ ≤ j′, and 4) τ′j′ − τ
′
k′ ∈ J.

1. From τ j ≥ τi, τ′j′ = τ j, τ′i′ = τi we see that τ′j′ ≥
τ′i′ . From j′ being the maximal time point with the
timestamp τ′j′ it follows that j′ ≥ i′.

2. From τ j − τi ∈ I, τ′i′ = τi, and τ′j′ = τ j it follows that
τ′j′ − τ

′
i′ ∈ I.

3. From τk ≤ τ j, τ′k′ = τk, τ′j′ = τ j we see that τ′k′ ≤
τ′j′ . From j′ being the maximal time point with the
timestamp τ′j′ , it follows that k′ ≤ j′.

4. From τ j − τk ∈ J, τ′j′ = τ j, and τ′k′ = τk it follows that
τ′j′ − τ

′
k′ ∈ J.

Therefore, (D̄′, τ̄′, v, i′) |= �I �- J φ and �I �- J φ has the
property ALL.

• �- I �J φ. This case is similar to the previous one, but we
pick the minimal time point for the temporal operator �- I .

B.4 Interleaving-sufficient Formulas

In this section, we show the correctness of Theorem 4.6.
The implications in Theorem 4.6 follow directly from the
correctness of the labeling rules (Lemma 4.5) and from the
following lemma.

Lemma B.5. Let φ be a formula.
1. If φ has the property ALL, then φ has the properties (I1)

and (I2).
2. If φ has the property ONE, then � φ has the properties (I1)

and (I2).

Proof: We fix two arbitrary interleavings (D̄, τ̄) and
(D̄′, τ̄′) of two given temporal structures.
1. We first show that φ has (I1). Suppose that φ has the

property ALL and that (D̄, τ̄, v, 0) |= φ for some valuation v.
Since φ has the property ALL, it follows that (D̄′, τ̄′, v, i′) |=
φ for all time points i′ with τ0 = τ′i′ . Since τ0 = τ′0, it
follows that (D̄′, τ̄′, v, 0) |= φ and hence φ has (I1).
Next, we show that φ has (I2). Suppose that φ has the
property ALL and that (D̄, τ̄, v, 0) 6|= φ for some valuation v.
To achieve a contradiction, suppose that (D̄′, τ̄′, v, 0) |= φ.
From this and from φ : ALL, it follows that (D̄, τ̄, v, 0) |= φ,
which is a contradiction. Hence, (D̄′, τ̄′, v, 0) 6|= φ and φ
has (I2).

2. We first show that � φ has (I1). Suppose that φ has the prop-
erty ONE and that (D̄, τ̄, v, 0) |= � φ for some valuation v.
Then (D̄, τ̄, v, i) |= φ for all time points i ∈ N. Since φ has
the property ONE, it follows that (D̄′, τ̄′, v, i′) |= φ for all
corresponding time points i′ ∈ N. Hence (D̄′, τ̄′, v, 0) |= � φ
and � φ has (I1).
We continue to show that � φ has also (I2). Suppose that φ
has the property ONE and that (D̄, τ̄, v, 0) 6|= � φ for some
valuation v. Then (D̄, τ̄, v, i) 6|= φ for some time point i ∈ N.
To achieve a contradiction, suppose that (D̄′, τ̄′, v, i′) |=
φ, where i′ is the time point corresponding to i. But
from this and φ : ONE it follows that (D̄, τ̄, v, i) |= φ,
which is a contradiction. Hence, (D̄′, τ̄′, v, i′) 6|= φ, so that
(D̄′, τ̄′, v, 0) 6|= � φ and � φ has (I2).
We now prove the other part of Theorem 4.6, which states

that a formula φ can be labeled in time linear in its length. We
start with some definitions and then present a simple labeling
algorithm and analyze its complexity.

For a formula φ, we define its immediate subformulas
isub(φ) to be: (i) {ψ} if φ = ¬ψ, φ = ∃x. ψ, φ = d- I ψ, or
φ = d

I ψ; (ii) {ψ, χ} if φ = ψ ∧ χ, φ = ψ SI χ, or φ = ψ UI χ;
and (iii) ∅ otherwise. For a rule r, we denote `(r) the label of
the rule’s conclusion.

We assume that the data structure used to represent formulas
is a tree corresponding to the formula’s syntax tree and that
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each node in the tree also stores two bits to represent the two
different labels. Initially these bits are set to 0, meaning that
no label is associated with the corresponding subformula.

1 add labels(φ)
2 foreach ψ ∈ isub(φ)
3 add labels(ψ)
4 foreach rule r
5 if matches(φ, r) then
6 add label(φ, `(r))

The function matches(φ, r) checks if the formula φ pattern
matches a rule r. The order of rules is arbitrary, with the
exception that the weakening rules are checked last. So, for
instance if φ received label ALL, then φ will match the appro-
priate weakening rule and it will also be labeled with ONE. As
rules have constant size, and only at most the first two levels
of the tree representing the formula φ need to be inspected,
we conclude that the function executes in constant time.

The function add label(φ, `) simply adds the label ` to φ.
Clearly, this operation can be performed in constant time.

Note that the execution of the lines 2 and 4–6 takes constant
time: |isub(φ)| ≤ 2 for any φ, there is a fixed, constant number
of rules, and the functions matches and add label execute
in constant time. Furthermore, the function add labels is
executed once for each subformula of φ. Hence the whole
labeling procedure of φ takes time linear in the length of φ.

B.5 Labeling Rules (Collapse)

In this section, we show the correctness of Lemma 5.4, that
is, the soundness of the labeling rules shown in Figure 5, and
of the rules shown in Figure 6.

Proof: We first show the correctness of the labeling
rules from Figure 5. We proceed by induction on the size
of the derivation tree assigning label ` to φ. We make a case
distinction based on the rule applied to label the formula, that
is, the rule at the tree’s root. However, for clarity, we generally
group cases by the formula’s form.

Let (C̄, κ̄) be the collapse of an interleaving of two given
temporal structures. For readability, and without loss of gen-
erality, we already fix an arbitrary valuation v, an arbitrary time
point i, and an arbitrary temporal structure (D̄, τ̄) ∈ col−1(C̄, κ̄).

We first consider the weakening rules:
• φ is labeled with (|=∀) and (|=∃). Suppose that

(C̄, κ̄, v, i) |= φ. By the induction hypothesis, φ has
the property (|=∀), thus (D̄, τ̄, v, j) |= φ for any j with
τ j = κi. By the definition of (C̄, κ̄), there is at least one j
with τ j = κi. Hence φ has the property (|=∃).

• φ is labeled with (6|=∀) and with (6|=∃). This case is
analogous to the previous one.

Next, we make a case distinction on the form of the formula.
Consider formulas of the form:
• φ = t ≈ t′, where t and t′ are variables or constants. In

this case φ is labeled with (|=∀) and ( 6|=∀).
– φ is labeled with (|=∀). Suppose that (C̄, κ̄, v, i) |= φ.

Then v(t) = v(t′). Clearly, (D̄, τ̄, v, j) |= φ for any
time point j, as φ only depends on the valuation. The
property (|=∀) is hence satisfied.

– φ is labeled with ( 6|=∀). This case is analogous to the
previous one.

• φ = t ≺ t′, where t and t′ are variables or constants. This
case is analogous to the previous one.

• φ = r(t1, . . . , tι(r)), where t1, . . . , tι(r) are variables or
constants. In this case φ is labeled with (|=∃) and (6|=∀).
– φ is labeled with (|=∃). Suppose that (C̄, κ̄, v, i) |= φ.

Then (v(t1), . . . , v(tι(r))) ∈ rCi . As rCi =
⋃
{ j|τ j=κi}

rD j ,
there is a j with τ j = κi such that (v(t1), . . . , v(tι(r))) ∈
rD j . Therefore (D̄, τ̄, v, j) |= φ. Thus φ has the property
(|=∃).

– φ is labeled with ( 6|=∀). Suppose that (C̄, κ̄, v, i) 6|=
φ. Then for any j with τ j = κi we have that
(v(t1), . . . , v(tι(r))) < rD j , that is, (D̄, τ̄, v, j) 6|= φ. Thus
φ has the property ( 6|=∀).

• φ = ¬ψ. If ψ is labeled with `, then φ is labeled with ¬`,
where ¬` is (|=∀), (6|=∀), (6|=∃), or (|=∃) when ` is ( 6|=∀),
(|=∀), (|=∃), or (6|=∃), respectively.
– φ is labeled with (|=∀). Suppose that (C̄, κ̄, v, i) |= ¬ψ.

By the induction hypothesis, ψ has the property (6|=∀).
As (C̄, κ̄, v, i) 6|= ψ, we have that (D̄, τ̄, v, k) 6|= ψ, that is,
(D̄, τ̄, v, k) |= φ, for all k with τk = κi. Thus φ has the
property (|=∀).

– The other cases are similar.
• φ = ψ ∨ χ. There are four rules to be analyzed.

– φ, ψ, and χ are labeled with ( 6|=∀). Suppose that
(C̄, κ̄, v, i) 6|= ψ∨χ. Then (C̄, κ̄, v, i) 6|= ψ and (C̄, κ̄, v, i) 6|=
χ. By the induction hypothesis, ψ and χ have the
property (6|=∀). Hence, for all j with τ j = κi, we have
(D̄, τ̄, v, j) 6|= ψ and (D̄, τ̄, v, j) 6|= χ. Thus (D̄, τ̄, v, j) 6|=
φ for all j with τ j = κi. Hence, φ has the property ( 6|=∀).

– The other cases are similar.
• φ = ∃x.ψ. There are four rules, one for each label: if ψ

is labeled with `, then φ is labeled with `.
– ` is (|=∀). Suppose that (C̄, κ̄, v, i) |= ∃x.ψ. Then there

is a d ∈ |D̄| such that (C̄, κ̄, v[x/d], i) |= ψ. As ψ has the
property (|=∀), we have (D̄, τ̄, v[x/d], j) |= ψ for all j
with τ j = κi. That is, (D̄, τ̄, v, j) |= ∃x.ψ for all j with
τ j = κi. Hence φ has the property (|=∀).

– The other cases are similar.
• φ = ψ SI χ. We have three rules to analyze.

– φ, ψ, and χ are each labeled with (|=∀). By the
induction hypothesis, ψ and χ have the property (|=∀).
Suppose that (C̄, κ̄, v, i) |= φ. Then, for some j ≤ i with
κi − κ j ∈ I, we have (C̄, κ̄, v, j) |= χ and (C̄, κ̄, v, k) |= ψ
for all k ∈ [ j + 1, i + 1). Let i′ be an arbitrary time
point such that τi′ = κi. As χ has the property (|=∀),
for the largest j′ with τ j′ = κ j we have (D̄, τ̄, v, j′) |= χ.
Clearly, τi′ − τ j′ ∈ I. From the definition of (C̄, κ̄), for
any k′ ∈ [ j′ + 1, i′ + 1), there is a k ∈ [ j + 1, i + 1) such
that τk′ = κk. Then, as ψ has the property (|=∀), for
any k′ ∈ [ j′ + 1, i′ + 1), we have (D̄, τ̄, v, k′) |= ψ. As
ψ has the property (|=∀), for all k ∈ [ j + 1, i + 1) and
all k′ with τk′ = κk, we have (D̄, τ̄, v, k′) |= ψ. Hence
(D̄, τ̄, v, i′) |= ψSI χ, and thus φ has the property (|=∀).

– φ, ψ, and χ are each labeled with (6|=∀). By the
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induction hypothesis, ψ and χ have the property (6|=∀).
Suppose that (C̄, κ̄, v, i) 6|= φ. Furthermore, to achieve a
contradiction, suppose that φ does not have the prop-
erty ( 6|=∀). That is, there is an i′ with τi′ = κi such that
(D̄, τ̄, v, i′) |= φ. Then there is a j′ ≤ i′ with τi′ −τ j′ ∈ I
such that (D̄, τ̄, v, j′) |= χ and for all k′ ∈ [ j′ + 1, i′ + 1)
we have (D̄, τ̄, v, k) |= ψ. By the definition of (C̄, κ̄),
there is a j with κ j = τ j′ . As χ has the property
( 6|=∀), we have that (C̄, κ̄, v, j) |= χ. Similarly, we have
that (C̄, κ̄, v, k) |= ψ for all k ∈ [ j + 1, i + 1). That is,
(C̄, κ̄, v, i) |= φ, which is a contradiction.

– φ and ψ are labeled with ( 6|=∃), and χ is labeled by
( 6|=∀). By the induction hypothesis, ψ and χ have the
properties ( 6|=∃) and ( 6|=∀), respectively. As before,
suppose that (C̄, κ̄, v, i) 6|= φ. Furthermore, to achieve
a contradiction, suppose that φ does not have the
property ( 6|=∃). That is, for all i′ with τi′ = κi we have
(D̄, τ̄, v, i′) |= φ. Consider the largest such i′. Then there
is a j′ ≤ i′ with τi′ − τ j′ ∈ I such that (D̄, τ̄, v, j′) |= χ
and for all k′ ∈ [ j′ + 1, i′ + 1) we have (D̄, τ̄, v, k′) |= ψ.
By the definition of (C̄, κ̄), there is a j with κ j = τ j′ . As
χ has the property ( 6|=∀), we have that (C̄, κ̄, v, j) |= χ.
Take k ∈ [ j + 1, i + 1) arbitrarily. If (C̄, κ̄, v, k) 6|= ψ,
as ψ has the property (6|=∃), then there is a k′ with
τk′ = κk such that (D̄, τ̄, v, k′) 6|= ψ. This contradicts our
assumption that (D̄, τ̄, v, i′) |= φ, since k′ must be in the
interval [ j′+1, i′+1). We thus have that (C̄, κ̄, v, k) |= ψ
for all k ∈ [ j + 1, i + 1). Hence (C̄, κ̄, v, i) |= φ, which is
a contradiction.

• φ = ψ UI χ. This case is analogous to the previous one.
• φ = (ψ SI χ) ∧ (�J ψ) with 0 < I and 0 ∈ J. φ and χ

are labeled with ( 6|=∀), and ψ is labeled by ( 6|=∃). By
the induction hypothesis, ψ and χ have the properties
( 6|=∃) and ( 6|=∀), respectively. Suppose that (C̄, κ̄, v, i) 6|= φ.
Furthermore, to achieve a contradiction, suppose that φ
does not have the property (6|=∀). That is, there is an i′

with τi′ = κi such that (D̄, τ̄, v, i′) |= φ. Then there is a
j′ ≤ i′ with τi′ − τ j′ ∈ I such that (D̄, τ̄, v, j′) |= χ and for
all k′ ∈ [ j′ + 1, i′ + 1) we have (D̄, τ̄, v, k′) |= ψ; and for
all j′′ ≥ i′ with τ j′′ − τi′ ∈ J we have (D̄, τ̄, v, j′′) |= ψ.
By the definition of (C̄, κ̄), there is a j with κ j = τ j′ . As
χ has the property (6|=∀), we have that (C̄, κ̄, v, j) |= χ.
Take k ∈ [ j + 1, i) arbitrarily. If (C̄, κ̄, v, k) 6|= ψ, as ψ has
the property (6|=∃), then there is a k′ with τk′ = κk such
that (D̄, τ̄, v, k′) 6|= ψ. This contradicts our assumption that
(D̄, τ̄, v, i′) |= φ. Indeed, k′ must be in the interval [ j′ +

1, i′′ + 1), where i′′ is the largest time point such that
τi′′ = κi. If k′ ≤ i′ then (D̄, τ̄, v, i′) 6|= ψ SI χ. If k′ > i′

then (D̄, τ̄, v, i′) 6|= �J ψ, as 0 ∈ J. We thus have that
(C̄, κ̄, v, k) |= ψ for all k ∈ [ j + 1, i + 1). Hence (C̄, κ̄, v, i) |=
ψ SI χ.
As (D̄, τ̄, v, i′) |= �J ψ and 0 ∈ J, it follows that for all
k′ ≥ i′ with τk′ = τi′ we have (D̄, τ̄, v, k′) |= ψ. We have
seen that (D̄, τ̄, v, k′) |= ψ for all k′ ∈ [ j′+1, i′+1). Because
τ j′ < τi′ (as 0 < I), it also follows that for all k′ ≤ i′ with
τk′ = τi′ we have (D̄, τ̄, v, k′) |= ψ. Hence (D̄, τ̄, v, k′) |= ψ
for all k′ with τk′ = τi′ . As ψ has the property (6|=∃),

we obtain that (C̄, κ̄, v, i) |= ψ. Similarly, we obtain that
(C̄, κ̄, v, k) |= ψ for all k > i such that κk − κi ∈ J. Hence
(C̄, κ̄, v, i) |= �J ψ.
We showed that (C̄, κ̄, v, i) |= φ, which is a contradiction.
Thus φ has the property ( 6|=∀).

• φ = (ψ UI χ) ∧ (�- J ψ) with 0 < I and 0 ∈ J. This case is
analogous to the previous one.

• φ = �- I ψ. There are two rules to analyze. For both rules,
ψ is labeled with (|=∃). Suppose that (C̄, κ̄, v, i) |= φ. Then
there is a j ≤ i with κi − κ j ∈ I such that (C̄, κ̄, v, j) |= ψ.
As, by the induction hypothesis, ψ has the property (|=∃),
there is a j′ with τ j′ = κ j such that (D̄, τ̄, v, j′) |= ψ.
– φ is labeled with (|=∃). Take i′ to be the largest k such

that τk = κi. Clearly, τi′ − τ j′ ∈ I and j′ ≤ i′. Hence
(D̄, τ̄, v, i′) |= �- I ψ and φ has the property (|=∃).

– 0 < I and φ is labeled with (|=∀). Take i′ arbitrarily
such that τi′ = κi. Clearly, τi′ − τ j′ ∈ I and, as 0 < I,
τi′ − τ j′ > 0, thus j′ < i′. Hence (D̄, τ̄, v, i′) |= �- I ψ.
Thus φ has the property (|=∀).

• φ = �I ψ. This case is analogous to the previous one.
• φ = �- I �J ψ with 0 ∈ I ∩ J. There is only one rule to

consider: ψ is labeled with (|=∃) and φ is labeled by (|=∀).
Suppose that (C̄, κ̄, v, i) |= φ. Then there is a j ≤ i with
κi − κ j ∈ I and there is a k ≥ j with κk − κ j ∈ J such
that (C̄, κ̄, v, k) |= ψ. As, by the induction hypothesis, ψ
has the property (|=∃), there is a k′ with τk′ = κk such
that (D̄, τ̄, v, k′) |= ψ. Take i′ arbitrarily such that τi′ = κi.
If k′ ≥ i′ then 0 ≤ τk′ − τi′ = κk − κi ≤ κk − κ j ∈ J. As
0 ∈ J, we have τk′ − τi′ ∈ J. Thus (D̄, τ̄, v, i′) |= �J ψ and,
as 0 ∈ I, (D̄, τ̄, v, i′) |= �- I �J ψ. The case when k′ < i′ is
similar. Hence φ has the property (|=∀).

We continue to show the soundness of the rules for the
Boolean operator ∧, the quantifier ∀, and the temporal op-
erators trigger TI and release RI , shown in Figure 6. The
soundness of these rules follows from the soundness of the
rules in Figure 5 and the mentioned equivalences. For instance,
the correctness of the rule

ψ : (|=∃) χ : (|=∀)
(ψ TI χ) ∨ ( �J ψ) : (|=∀)

0 < I, 0 ∈ J

follows from unfolding the abbreviation (ψTIχ)∨( �J ψ), which
is ¬

(
(¬ψ SI ¬χ) ∧ (�J ¬ψ)

)
, and the following derivation:

ψ : (|=∃)
¬ψ : (6|=∃)

χ : (|=∀)
¬χ : (6|=∀)

(¬ψ SI ¬χ) ∧ (�J ¬ψ) : (6|=∀)
0 < I, 0 ∈ J

¬
(
(¬ψ SI ¬χ) ∧ (�J ¬ψ)

)
: (|=∀)

B.6 Collapse-sufficient Formulas

In this section, we show the correctness of Lemma 5.5 and
Theorem 5.6.

The implication in Theorem 5.6 follows directly from
Lemma 5.5, which in turn follows from the correctness of the
derivation rules (Lemma 5.4) and from the following lemma.

Lemma B.6. Let φ be a formula.
1. If φ has the property (|=∀), then φ has property (C1).
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2. If φ has the property (6|=∀), then φ has property (C2).
3. If φ has the property (|=∃), then � φ has property (C1).
4. If φ has the property (6|=∃), then � φ has property (C2).

Proof: We fix a temporal structure (C̄, κ̄).
1. Suppose φ has the property (|=∀) and that (C̄, κ̄, v, 0) |= φ

for some valuation v. Then, for any (D̄, τ̄) ∈ col−1(C̄, κ̄)
and every j ∈ N with κ0 = τ j, it holds that (D̄, τ̄, v, j) |= φ.
By the definition of collapsed temporal structure, we have
κ0 = τ0. Hence φ has (C1).

2. This case is analogous to the previous one.
3. Suppose φ has the property (|=∃) and that (C̄, κ̄, v, 0) |= � φ

for some arbitrary valuation v. Then (C̄, κ̄, v, i) |= φ for some
i ∈ N. Because φ has the property (|=∃), for every (D̄, τ̄) ∈
col−1(C̄, κ̄), there is some j ∈ N with κi = τ j such that
(D̄, τ̄, v, j) |= φ. It follows that (D̄, τ̄, v, 0) |= � φ. Hence
� φ has (C1).

4. This case is analogous to the previous one.
The proof for the complexity of the labeling procedure is

analogous to the proof for Theorem 4.6. The only difference is
in using four bits for the four different labels instead of using
two bits for two labels.

B.7 Policy Approximation
In this section, we show the correctness of Theorem 6.2
concerned with weakening and strengthening formulas.

Proof: We first show that φw is weaker than φ, or more
precisely, that the formula φ → φw is valid. We proceed by
structural induction on φ.
• φ = t ≈ t′, φ = t ≺ t′, φ = ¬(t ≈ t′), φ = ¬(t ≺ t′), or
¬r(t1, . . . , tι(r)), where t, t′, and ti with 1 ≤ i ≤ ι(r) are
variables or constants. Then φw = φ, and the statement
clearly holds.

• φ = r(t1, . . . , tι(r)). Then φw = �- J �J′ r(t1, . . . , tι(r)), for
some intervals J and J′ with 0 ∈ J ∩ J′. Let (D̄, τ̄) be
a temporal structure, v a valuation, and i a time point.
Suppose that (D̄, τ̄, v, i) |= φ. As 0 ∈ I ∩ J, we clearly
have (D̄, τ̄, v, i) |= �- J �J′ φ, that is, (D̄, τ̄, v, i) |= φ′.

• φ = ψ ∧ χ, φ = ∃x. ψ, φ = d- I ψ, φ = d
I ψ, φ = ψ SI

χ, or φ = ψ UI χ. These cases follow directly from the
induction hypotheses. We only present the case φ = ψSI

χ. We have φw = ψw SI χ
w. Let (D̄, τ̄) be a temporal

structure, v a valuation, and i a time point. Suppose that
(D̄, τ̄, v, i) |= φ. Then there is a j ≤ i with τi − τ j ∈ I
such that (D̄, τ̄, v, j) |= χ and (D̄, τ̄, v, k) |= ψ for any k ∈
[i + 1, j + 1). Using the induction hypotheses for ψ and χ,
we obtain that (D̄, τ̄, v, j) |= χw and (D̄, τ̄, v, k) |= ψw for
any k ∈ [i + 1, j + 1). Hence (D̄, τ̄, v, i) |= φw.

The proof of the dual case, that is, that the formula φs → φ
is valid, is similar. It is based on the remark that the formula(
¬ �- J �J′ r(t1, . . . , tι(r))

)
→ ¬r(t1, . . . , tι(r)) is valid.

Finally, we prove Statement (1). Statement (2) is similar.
Let (C̄, κ̄) be the collapse of two temporal structures (D̄1, τ̄1)
and (D̄2, τ̄2). Suppose that φs is collapse-sufficient and that
(C̄, κ̄, v, 0) |= φs, for some arbitrary valuation v. It follows that
(D̄, τ̄, v, 0) |= φs for any (D̄, τ̄) ∈ (D̄1, τ̄1) ./(D̄2, τ̄2). As φs → φ
is valid, we have that (D̄, τ̄, v, 0) |= φ, for any (D̄, τ̄) ∈ (D̄1, τ̄1) ./

(D̄2, τ̄2).

B.8 Relationship between Interleaving-sufficient and
Collapse-sufficient Formulas

In this section, we show the correctness of Theorem 6.1
claiming that if an MFOTL formula is collapse-sufficient, then
it is also interleaving-sufficient.

Proof: Suppose that φ is a collapse-sufficient MFOTL
formula. Moreover, let (D̄1, τ̄1), (D̄2, τ̄2), (D̄, τ̄), and (C̄, κ̄)
be temporal structures where (D̄, τ̄) ∈ (D̄1, τ̄1) ./ (D̄2, τ̄2) and
(C̄, κ̄) = col((D̄, τ̄)). We fix an arbitrary valuation v. There are
two cases to consider: either φ is satisfied on (D̄, τ̄) or it is not.

First, if (D̄, τ̄, v, 0) |= φ, then also (C̄, κ̄, v, 0) |= φ. To see
this, suppose that (C̄, κ̄, v, 0) 6|= φ. As φ has the property (C2),
it would follow that (D̄, τ̄, v, 0) 6|= φ, which is a contradiction.
From (C̄, κ̄, v, 0) |= φ and φ having the property (C1), it follows
that (D̄′, τ̄′, v, 0) |= φ for all (D̄′, τ̄′) ∈ (D̄1, τ̄1) ./ (D̄2, τ̄2).
Hence, φ has the property (I1).

Second, if (D̄, τ̄, v, 0) 6|= φ, then since φ has the property
(C1), it follows that (C̄, κ̄, v, 0) 6|= φ. Since φ has the property
(C2), it follows that (D̄′, τ̄′, v, 0) 6|= φ, for all (D̄′, τ̄′) ∈
(D̄1, τ̄1) ./ (D̄2, τ̄2). Hence, φ has the property (I2).

Since φ has the properties (I1) and (I2), it is interleaving-
sufficient.
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