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David Basin, Matúš Harvan, Felix Klaedtke, and Eugen Zălinescu
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Abstract—We have previously presented a monitoring al-
gorithm for compliance checking of policies formalized in
an expressive metric first-order temporal logic. We explain
here the steps required to go from the original algorithm to
a working infrastructure capable of monitoring an existing
distributed application producing millions of log entries per
day. The main challenge is to correctly and efficiently monitor
the trace interleavings obtained by totally ordering actions
that happen at the same time. We provide solutions based
on formula transformations and monitoring representative
traces. We also report, for the first time, on statistics on the
performance of our monitor on real-world data, providing
evidence of its suitability for nontrivial applications.

I. Introduction

Determining whether the usage of sensitive data complies
with regulations and policies is a growing concern for com-
panies, administrations, and end users alike. In the context
of IT systems, this question amounts to whether one can im-
plement processes that monitor other processes. In previous
work [1], [2], we have demonstrated that metric first-order
temporal logic (MFOTL) is a good candidate for monitoring
data usage to determine policy compliance. In particular,
the metric temporal operators allow one to formalize both
qualitative and quantitative temporal relationships between
actions and, as the logic is first-order, we can also formulate
dependencies between the finite but unbounded number of
agents and data elements in IT systems. We have given
a monitoring algorithm for MFOTL [1] and many usage-
control policies can be naturally formulated in the fragment
that the monitor handles efficiently [2].

In this paper, we extend our previous work by deploying
and evaluating our monitoring approach in a real-world
concurrent and distributed setting. This is in contrast to
our previous analysis [2], which we carried out in a non-
distributed setting where we used log files filled with syn-
thetically generated actions. In the following, we describe
our monitoring setup and the challenges we faced. We begin
with an abstract description of the systems that we handle.

System Model. The types of entities in our systems
are data, (data) stores, agents, and actions. Data is stored in
distributed data stores such as databases and repositories and
created, read, modified, propagated, combined, and deleted
by actions initiated by agents. Agents are either humans or
applications, including database triggers.

Agents always access the data directly from a store and
never indirectly from another agent. Whenever an agent

Figure 1. System Extension

wants to use some data, it accesses the appropriate store,
uses the data, and discards it afterwards. For subsequent
usage, it must access the store again. Before discarding the
data, the agent may write it, possibly after processing it in
some way, into the same or a different store. In this way,
data can propagate between stores. A consequence of this
restriction on the interaction between system entities is that
the use of data is always observable at the data stores.

Systems are governed by (usage-control) policies, which
state requirements on the usage of the data. For example,
only agents with particular credentials may modify data, or
data must be deleted after two years from a given store.
Agents may or may not comply with policies.

Logging and Monitoring. Given a system that is an
instance of the above system model, we must extend it
to support logging and monitoring. To determine whether
a policy is violated we usually need to relate actions that
are carried out in different parts of the system. Moreover,
the ordering of actions and the time elapsed between them
is important. To relate actions and the times when they
happen, we log them locally, annotating each action with a
timestamp, and merge these logs after some pre-processing.
We then monitor this merged stream of logged actions. These
system extensions are depicted in Figure 1.

Challenges and Contributions. Individual logs are
totally ordered and timestamped using local clocks. How-
ever, even assuming clock synchronization [3], we have only
a partial order on system actions [4] as multiple actions
with the same timestamp may occur in different logs. Our
main theoretical challenge is to monitor such a partially
ordered set of actions, which is, in general, an intractable
problem. In Section III, we identify a subclass of formulas
that describe properties that are insensitive to the ordering
of actions labeled by the same timestamp and for which
it suffices to monitor a particular merging of the logs,
namely, the merging that assumes that actions with equal
timestamps happen simultaneously. Furthermore, in case



the given formula is outside this class we provide means
to meaningfully monitor this merge by approximating the
described property.

A practical challenge is to deploy adequate logging mech-
anisms. The mechanisms should be complete in that they
log all occurrences of policy-relevant system actions. They
should also be accurate in that if an action is logged then it
has happened in the system and the corresponding log entry
accurately describes the action, e.g, it describes the involved
data and the associated timestamp is the actual time when
the action happened. Incomplete or inaccurate logging may
lead to false positives and false negatives when monitoring
the system.

In Section IV, we explain how we handle these practical
challenges in our case study. Where possible, we use existing
logging mechanisms and extract policy-relevant information
from the produced log entries. For system components where
no logging was available, we either added logging directly
to the components or we extended the components with
proxy mechanisms that logged actions. However, proxies
have limitations: agents do not necessarily access a store
over a proxy and proxies see requested actions but not
necessarily all the effects on the involved data. In our case,
the interactions could be accurately observed but not for all
agents, which led to accurate but incomplete logs.

Summarizing, we see our contributions as follows. We
provide solutions for efficiently monitoring partially ordered
logs, which is a central problem in monitoring real-time
concurrent distributed systems. Moreover, we evaluate the
performance of our monitoring approach and demonstrate
its effectiveness on a real-world application.

Organization. The remainder of this paper is structured
as follows. In Section II, we give background on MFOTL
and our monitor. In Section III, we show how we handle
the interleavings of multiple streams of logged actions from
different log producers. In Section IV, we report on our
case study. In Section V, we discuss related work and in
Section VI, we draw conclusions. The Appendices A–D
contain additional proof details. Additional details on the
case study are given in Appendix E.

II. Preliminaries

We briefly review metric first-order temporal logic
(MFOTL) and describe how we use it to monitor systems.

Syntax and Semantics. Let I be the set of nonempty
intervals over N. We will write an interval I ∈ I as [b, b′) :=
{a ∈ N | b ≤ a < b′}, where b ∈ N, b′ ∈ N ∪ {∞}, and b < b′.
A signature S is a tuple (C,R, ι), where C is a finite set
of constant symbols, R is a finite set of predicates disjoint
from C, and the function ι : R→ N associates each predicate
r ∈ R with an arity ι(r) ∈ N. In the following, let S = (C,R, ι)
be a signature and V a countably infinite set of variables,
assuming V ∩ (C ∪ R) = ∅.

(D̄, τ̄, v, i) |= t≈ t′ iff v(t) = v(t′)
(D̄, τ̄, v, i) |= t≺ t′ iff v(t) < v(t′)
(D̄, τ̄, v, i) |= r(t1, . . . , tι(r)) iff

(
v(t1), . . . , v(tι(r))

)
∈ rDi

(D̄, τ̄, v, i) |= (¬φ) iff (D̄, τ̄, v, i) 6|= φ
(D̄, τ̄, v, i) |= (φ ∨ ψ) iff (D̄, τ̄, v, i) |= φ or (D̄, τ̄, v, i) |= ψ
(D̄, τ̄, v, i) |= (∃x. φ) iff (D̄, τ̄, v[x/d], i) |= φ, for some d ∈ |D̄|
(D̄, τ̄, v, i) |= ( I φ) iff i > 0, τi − τi−1 ∈ I, and (D̄, τ̄, v, i − 1) |= φ
(D̄, τ̄, v, i) |= (#I φ) iff τi+1 − τi ∈ I and (D̄, τ̄, v, i + 1) |= φ
(D̄, τ̄, v, i) |= (φ SI ψ) iff for some j ≤ i, τi − τ j ∈ I, (D̄, τ̄, v, j) |= ψ,

and (D̄, τ̄, v, k) |= φ, for all k ∈ [ j + 1, i + 1)
(D̄, τ̄, v, i) |= (φ UI ψ) iff for some j ≥ i, τ j − τi ∈ I, (D̄, τ̄, v, j) |= ψ,

and (D̄, τ̄, v, k) |= φ, for all k ∈ [i, j)

Figure 2. Semantics of MFOTL

Formulas over the signature S are given by the grammar

φ ::= t1≈ t2
∣∣∣ t1≺ t2

∣∣∣ r(t1, . . . , tι(r))
∣∣∣ (¬φ)

∣∣∣ (φ ∨ φ)
∣∣∣ (∃x. φ)

∣∣∣
( I φ)

∣∣∣ (#I φ)
∣∣∣ (φ SI φ)

∣∣∣ (φ UI φ) ,

where t1, t2, . . . range over the elements in V ∪ C, and r, x,
and I range over the elements in R, V , and I, respectively.

To define MFOTL’s semantics, we need the following
notions. A structure D over S consists of a domain |D| , ∅
and interpretations cD ∈ |D| and rD ⊆ |D|ι(r), for each c ∈ C
and r ∈ R. A temporal structure over S is a pair (D̄, τ̄),
where D̄ = (D0,D1, . . . ) is a sequence of structures over S
and τ̄ = (τ0, τ1, . . . ) is a sequence of natural numbers (i.e.,
timestamps), where:
(1) The sequence τ̄ is monotonically increasing (i.e., τi ≤

τi+1, for all i ≥ 0) and makes progress (i.e., for every
i ≥ 0, there is some j > i such that τ j > τi).

(2) D̄ has constant domains, i.e., |Di| = |Di+1|, for all i ≥ 0.
We denote the domain by |D̄| and require that |D̄| is
strict linearly ordered by a relation <.

(3) Each constant symbol c ∈ C has a rigid interpretation,
i.e., cDi = cDi+1 , for all i ≥ 0. We denote c’s interpreta-
tion by cD̄.

A valuation is a mapping v : V → |D̄|. We abuse notation
by applying a valuation v also to constant symbols c ∈ C,
with v(c) = cD̄. For a valuation v, a variable x, and d ∈ |D̄|,
v[x/d] is the valuation mapping x to d and not altering the
other variables’ valuation.

The semantics of MFOTL, (D̄, τ̄, v, i) |= φ, is given in
Figure 2, where (D̄, τ̄) is a temporal structure over the
signature S , with D̄ = (D0,D1, . . . ), τ̄ = (τ0, τ1, . . . ), v a
valuation, i ∈ N, and φ a formula over S . Note that the
temporal operators are labeled with intervals I and a formula
of the form ( I φ), (#I φ), (φSIψ), or (φUIψ) is only satisfied
in (D̄, τ̄) at the time point i, if it is satisfied within the bounds
given by the interval I of the respective temporal operator,
which are relative to the current timestamp τi.

Terminology and Notation. We use standard syntactic
sugar such as �I φ := ¬(trueSI¬φ) and �I φ := ¬(trueUI¬φ),
where true := ∃x. x ≈ x. We also use non-metric operators
like � φ := �[0,∞) φ. We omit parentheses where possible,



e.g., unary operators (temporal and Boolean) bind stronger
than binary ones. A formula φ is bounded if the interval I of
every temporal operator UI occurring in φ is finite. We use
standard terminology like atomic formula and subformula.

System Monitoring. We illustrate our use of MFOTL
and our monitoring algorithm [1] for compliance checking
by the simple policy stating that reports must be approved
within at most 10 time units before they are published:

�∀x. publish(x)→ �[0,11) approve(x) .

We assume that the actions for publishing and approving
reports are logged in relations. Specifically, for each time
point i ∈ N, we have the unary relations PUBLISHi and
APPROVEi such that (1) x ∈ PUBLISHi iff report f is
published at time point i and (2) x ∈ APPROVEi iff report
x is approved at time point i. Observe that there can be
multiple approvals at the same time point for different
reports. Furthermore, every time point i has a timestamp
τi ∈ N.

The corresponding temporal structure (D̄, τ̄) with D̄ =

(D0,D1, . . . ) and τ̄ = (τ0, τ1, . . . ) of a sequence of logged
publishing and approval actions is as follows. The only
relational symbols in D̄’s signature are publish and approve,
both of arity 1. The domain of D̄ consists of all reports. The
ith structure in D̄ is timestamped with τi and contains the
relations PUBLISHi and APPROVEi.

To detect policy violations, our monitor [1] iteratively
processes the temporal structure (D̄, τ̄) representing the
stream of logged actions. This can be done offline or online.
At each time point i, it outputs the valuations satisfying
the negation of the formula publish(x) → �[0,11) approve(x).
Note that we drop the outermost quantifier since we are not
only interested in whether the policy is violated but also
which data is responsible for the reported violations.

In general, we assume that policies formalized in MFOTL
are of the form �ψ, where ψ is bounded. Since ψ is
bounded, the monitor need only take into account a finite
prefix of (D̄, τ̄) when determining the satisfying valuations
of ¬ψ at a time point i. To effectively determine all these
valuations, we also assume here that predicates have finite
interpretations in (D̄, τ̄), i.e., the relation rD j is finite, for
every predicate r and every j ∈ N. Furthermore, we require
that ¬ψ can be rewritten to a temporal-subformula-domain-
independent formula, a generalization of the standard notion
of domain-independent database queries [5].

III. Monitoring Concurrently Logged Actions

In this section, we first prove the intractability of monitor-
ing where logs are produced in a concurrent setting. We then
show how to partially overcome this obstacle by monitoring
a single log where all actions with equal timestamps are
assumed to have happened at the same point in time. Proof
details are given in the Appendices A–D.

Log Interleavings. Intuitively, an interleaving of logs
preserves the ordering of the logged actions with respect
to their timestamps, but allows for all possible orderings of
actions with equal timestamps that are recorded by different
log producers. To define this, let img( f ) denote the set {y ∈
Y | f (x) = y, for some x ∈ X}, for a function f : X → Y .
Furthermore, we assume in this section that all temporal
structures have the same signature (C,R, ι), equal domains,
and that constant symbols are equally interpreted. Note that
any two temporal structures in which the common constant
symbols are equally interpreted can easily be extended so
that their extensions fulfill this requirement.

Definition 1. Let (D̄1, τ̄1), (D̄2, τ̄2), and (D̄, τ̄) be temporal
structures. (D̄, τ̄) is an interleaving of (D̄1, τ̄1) and (D̄2, τ̄2)
if there are strictly monotonic functions f1, f2 : N→ N with
(1) img( f1) ∪ img( f2) = N,
(2) img( f1) ∩ img( f2) = ∅, and
(3) τk

i = τ fk(i) and rD
k
i = rD fk (i) , for all k∈{1, 2}, i∈N, r∈R.

We denote by (D̄1, τ̄1) ./ (D̄2, τ̄2) the set of all interleavings
of the temporal structures (D̄1, τ̄1) and (D̄2, τ̄2).

Since there are usually multiple interleavings of two
temporal structures, we formulate policy violations in terms
of a set of temporal structures.

Definition 2. Let T be a set of temporal structures.
(1) T weakly violates the formula φ at time point i ∈ N if

for some (D̄, τ̄) ∈ T and some valuation v, it holds that
(D̄, τ̄, v, i) 6|= φ.

(2) T strongly violates the formula φ at time point i ∈ N if
for all (D̄, τ̄) ∈ T, there is some valuation v such that
(D̄, τ̄, v, i) 6|= φ.

Unfortunately, even in a propositional setting, determining
whether the set of interleavings weakly or strongly violates
a formula is intractable.

Theorem 3. Let (D̄1, τ̄1) and (D̄2, τ̄2) be temporal struc-
tures, i ∈ N, and φ a quantifier-free sentence with only
Boolean and non-metric past operators that neither contains
the equality symbol ≈ nor the ordering symbol ≺.
1. Determining whether the set of interleavings (D̄1, τ̄1) ./

(D̄2, τ̄2) weakly violates φ at i is NP-complete.
2. Determining whether the set of interleavings (D̄1, τ̄1) ./

(D̄2, τ̄2) strongly violates φ at i is coNP-complete.

Note that both decision problems are well defined as φ
does not contain future operators. We therefore only need
to examine the finite prefixes with length i + 1 of the
interleavings to determine whether φ is weakly or strongly
violated at the given time point i.

Collapsing Interleaved Logs. We first give conditions
with respect to an arbitrary set of temporal structures for
when it suffices to monitor a single temporal structure. We
then identify a natural temporal structure for the set of
interleavings of two temporal structures, which we use for



monitoring.

Definition 4. The temporal structure (C̄, κ̄) is sufficient for
the formula φ on the set T of temporal structures if for all
valuations v, the following conditions are fulfilled:
(C1) If (C̄, κ̄, v, 0) |=φ then (D̄, τ̄, v, 0) |=φ, for all (D̄, τ̄)∈T.
(C2) If (C̄, κ̄, v, 0) 6|=φ then (D̄, τ̄, v, 0) 6|=φ, for all (D̄, τ̄)∈T.

In the following, the set T in the above definition will be
the set of interleavings of two temporal structures. For the
temporal structure (C̄, κ̄), we will use the so-called collapse:

Definition 5. Let (D̄, τ̄) and (C̄, κ̄) be temporal structures.
(C̄, κ̄) is a collapse of (D̄, τ̄) if there is a monotonic surjective
function f : N→ N such that
(1) if τi = τ j then f (i) = f ( j), for all i, j ∈ N,
(2) κ f (i) = τi, for all i ∈ N, and
(3) rC j =

⋃
i∈ f −1( j) rDi , for all j ∈ N and r ∈ R.

Intuitively, the structures of the temporal structure (D̄, τ̄)
with equal timestamps are collapsed into a single struc-
ture. The collapse is uniquely defined and we denote it
by col(D̄, τ̄). Furthermore, the collapses of temporal struc-
tures in the set of interleavings of two given temporal
structures are all isomorphic.

Before we identify formulas for which the collapse of an
interleaving of given temporal structures can be correctly
used for monitoring, we give practical reasons that justify
its use for monitoring. First, observe that the collapse can
be incrementally obtained from an arbitrary interleaving
of two given temporal structures. Hence, monitoring the
collapse can be done efficiently. Second, note that the
actual ordering of actions logged with equal timestamps
in a concurrent system cannot be known. Hence, it does
not make sense to consider just one arbitrary interleaving.
Assuming that equally timestamped actions have happened
at the same point in time naturally “hides” the differences
between interleavings. Moreover, reasonable policies for a
concurrent system should not care about the ordering of
equally timestamped actions in case of accurate and precise
clocks. In other words, if the collapsed temporal structure
is not sufficient for the policy on the set of interleavings,
then the policy might not be the intended one for the
system. Finally, monitoring the collapsed temporal structure
is practically more efficient than monitoring an interleaving.
This is because the monitor is invoked less often since time
points with equal timestamps are merged to a single one.
Hence, the monitor processes the logged actions with equal
timestamp in a single invocation.

Monitoring the Collapse. Intuitively, collapse-suffi-
cient formulas are formulas that do not yield false positives
and false negatives when monitoring the collapse of an
interleaving:

Definition 6. Let φ be a formula. For k ∈ {1, 2}, we say that
φ has the property (Ck) if (C̄, κ̄) fulfills the condition (Ck) in

Definition 4 with respect to φ and (D̄, τ̄) ./ (D̄′, τ̄′), for every
(D̄, τ̄), (D̄′, τ̄′), and (C̄, κ̄), where (C̄, κ̄) is the collapse of an
interleaving of (D̄, τ̄) and (D̄′, τ̄′). Moreover, φ is collapse-
sufficient if it has the properties (C1) and (C2).

Monitoring the collapse of a collapse-sufficient formula is
correct with respect to strong violations. Since the formula
has property (C2), violations found in (C̄, κ̄) imply that
the set of interleavings strongly violates the formula. The
converse is ensured by the property (C1): if no violation is
found in (C̄, κ̄) then all interleavings are policy compliant.
Furthermore, by monitoring (C̄, κ̄) we also detect when the
set of interleavings weakly violates the given formula. The
reason is that if a formula is strongly violated by the set of
interleavings then it also weakly violated, since the set of
interleavings is always nonempty.

Example 7. The formula �∀x.publish(x)→�[0,11) approve(x)
is not collapse-sufficient. Suppose that a report x is pub-
lished in (D̄1, τ̄1) at time point i, i.e., x ∈ publishD1

i and
only approved in (D̄2, τ̄2) at the equally timestamped time
point j, i.e., x ∈ approveD

2
j with τ2

j = τ1
i . Then there is an

interleaving (D̄, τ̄) ∈ (D̄1, τ̄1) ./ (D̄2, τ̄2) where the approval
action comes (pointwise) strictly after the publish action.
As a result, we cannot handle this formula correctly by
monitoring the collapsed temporal structure (C̄, κ̄) of an
interleaving of the given temporal structures (D̄1, τ̄1) and
(D̄2, τ̄2).

A slightly stronger policy can be efficiently monitored.
Namely, the policy that requires that an approval ac-
tion must happen timewise strictly before the publish ac-
tion, i.e., �∀x. publish(x) → �[1,11) approve(x). This for-
mula is collapse-sufficient. Similarly, �∀x. publish(x) →
♦[0,1) �[0,11) approve(x) is also collapse-sufficient. It formal-
izes the slightly weaker policy where publish actions must
be timewise but not pointwise previously approved.

Note that stutter-invariance [6] is a necessary condition for
collapse-sufficiency. However, it is not a sufficient condition.
For example, the formula �∀x. p(x) ∧ q(x) is stuttering-
invariant but not collapse-sufficient.

A Collapse-sufficient Fragment. In the following,
we present a fragment of collapse-sufficient formulas. Our
fragment is defined in terms of an algorithm that identifies
formulas that have property (C1) or property (C2).

The algorithm labels the atomic subformulas of the given
formula and propagates these labels bottom-up to the for-
mula’s root using a fixed set of inference rules. The labels
represent invariants, which capture the relation between
violations found in a collapsed temporal structure (C̄, κ̄)
at some time point and violations found in its pre-images
(D̄, τ̄) ∈ col−1(C̄, κ̄) at a time point with an equal timestamp,
where col−1(C̄, κ̄) denotes the set of temporal structures
(D̄′, τ̄′) with col(D̄′, τ̄′) = (C̄, κ̄). Note that (D̄, τ̄) ./(D̄′, τ̄′) (
col−1(C̄, κ̄), where (C̄, κ̄) is the collapse of an interleaving of



t ≈ t′ : (|=∀) t ≈ t′ : (6|=∀)

r(t1, . . . , tι(r)) : (|=∃) r(t1, . . . , tι(r)) : (6|=∀)

ψ : (|=∀)
ψ : (|=∃)

ψ : (6|=∀)
ψ : (6|=∃)

ψ : (|=∀)
�I ψ : (|=∀)

ψ : (|=∃)
�I ψ : (|=∃)

ψ : (|=∃)
�I ψ : (|=∀)

0 < I
ψ : (6|=∀)
�I ψ : (6|=∀)

ψ : (|=∃)
�I ♦J ψ : (|=∀)

0 ∈ I ∩ J

Figure 3. Selection of Inference Rules

the temporal structures (D̄, τ̄) and (D̄′, τ̄′).
The labels and their corresponding invariants are as fol-

lows for a formula φ:
(|=∀): For all valuations v and all i ∈ N, if (C̄, κ̄, v, i) |= φ

then for every (D̄, τ̄) ∈ col−1(C̄, κ̄) and every j ∈ N with
κi = τ j, it holds that (D̄, τ̄, v, j) |= φ.

(|=∃): For all valuations v and all i ∈ N, if (C̄, κ̄, v, i) |= φ
then for every (D̄, τ̄) ∈ col−1(C̄, κ̄), there is some j ∈ N
with κi = τ j such that (D̄, τ̄, v, j) |= φ.

(6|=∀): For all valuations v and all i ∈ N, if (C̄, κ̄, v, i) 6|= φ
then for every (D̄, τ̄) ∈ col−1(C̄, κ̄) and every j ∈ N with
κi = τ j, it holds that (D̄, τ̄, v, j) 6|= φ.

(6|=∃): For all valuations v and all i ∈ N, if (C̄, κ̄, v, i) 6|= φ
then for every (D̄, τ̄) ∈ col−1(C̄, κ̄), there is some j ∈ N
with κi = τ j such that (D̄, τ̄, v, j) 6|= φ.

The first symbol (|= or 6|=) in a label states whether the
formula is satisfied in the collapsed temporal structure (C̄, κ̄).
The second symbol (∀ or ∃) states whether the formula is
satisfied at some equally timestamped time point or at all
equally timestamped time points in all temporal structures
(D̄, τ̄) ∈ col−1(C̄, κ̄).

Due to space limitations, Figure 3 shows only some of
our inference rules. All rules can be found in Appendix C,
where we also prove their soundness.

First, consider the rules in Figure 3 for atomic formulas.
An atomic formula t ≈ t′ depends only on the valuation and
therefore can be labeled (|=∀) and (6|=∀). An atomic formula
of the form r(t1, . . . , tι(r)) can be labeled (|=∃) and ( 6|=∀).
We only explain the labeling (|=∃). The explanation for the
label (6|=∀) is analogous. The interpretation of a predicate in
a collapsed temporal structure (C̄, κ̄) at a time point i is the
union of the predicate’s interpretations at all time points j in
a temporal structure (D̄, τ̄) ∈ col−1(C̄, κ̄) for which τ j equals
κi. Therefore, if ā ∈ rCi then ā ∈ rD j , for some j ∈ N with
τ j = κi. Note that ā ∈ rD j does not necessarily hold for all
these js; hence, we cannot label r(t1, . . . , tι(r)) with ( 6|=∀).

The next two rules in Figure 3 express that the invari-
ants corresponding to the labels (|=∀) and (6|=∀) imply the
invariants corresponding to (|=∃) and ( 6|=∃), respectively.

Next, we consider the inference rules for the temporal
operator �I . We first justify the inference rule that allows

us to propagate the label (|=∀) from ψ to �I ψ. If �I ψ is
satisfied in the collapsed temporal structure (C̄, κ̄) at time
point i then ψ is satisfied at some previous time point j ≤ i
in (C̄, κ̄) with κi − κ j ∈ I. Because ψ is labeled with (|=∀),
all time points with timestamp κ j in the temporal structure
(D̄, τ̄) ∈ col−1(C̄, κ̄) also satisfy ψ, and hence, all time points
with timestamp κi satisfy �I ψ in (D̄, τ̄). When ψ is labeled
with (|=∃), possibly only a single time point k in (D̄, τ̄)
with τk = κ j satisfies ψ. If 0 ∈ I then �I ψ might not be
satisfied at time points before k, even if these time points
have the timestamp κi. So, we can label �I with (|=∃) but
not with (|=∀). However, if 0 < I then ψ is satisfied in (C̄, κ̄)
at a time point j with the timestamp κ j < κi. Hence �I ψ
is satisfied in (D̄, τ̄) at all time points with the timestamp
κi. This allows us to label �I ψ with (|=∀). Finally, consider
the rule where ψ is labeled (6|=∀). If �I ψ is violated in the
collapsed temporal structure (C̄, κ̄) at timestamp κi then ψ
is violated at all previous points in the temporal structure
(D̄, τ̄) ∈ col−1(C̄, κ̄) that satisfy the metric constraints given
by I. But then �I ψ is also violated in (D̄, τ̄) at all time points
with the timestamp κi. Hence we can label �I ψ with (6|=∀).

We can try to label a formula solely based on inference
rules that involve only a single Boolean or temporal operator.
However, with more specialized inference rules like the
one for �I ♦J ψ given in Figure 3, we are more likely to
succeed in propagating labels to the root of the formula.
Intuitively, with the nesting of the operators �I and ♦J , and
when 0 ∈ I ∩ J, the ordering of equally timestamped time
points becomes irrelevant since from a given time point, we
can freely choose any of these time points that satisfy the
metric constraints given by the intervals I and J. Hence, a
labeling (|=∃) for ψ allows us to label �I ♦J ψ with (|=∀).

Finally, we remark that there are no inference rules for
the temporal operators  I and #I because these operators
inherently rely on the relative ordering of the structures in
a temporal structure.

Based on the labels at the root of the formula, we can
determine if the formula has the property (C1) or the
property (C2). The conclusions we can draw are stated in
the following lemma, which follows from the soundness of
the inference rules.

Lemma 8. Let φ be a formula.
1. If φ can be labeled by (|=∀) then φ has property (C1).
2. If φ can be labeled by ( 6|=∀) then φ has property (C2).
3. If φ can be labeled by (|=∃) then ♦ φ has property (C1).
4. If φ can be labeled by (6|=∃) then � φ has property (C2).

Based on this lemma, we obtain the following theorem.

Theorem 9. If the formula φ can be labeled by (|=∀)
and ( 6|=∀) then it is collapse-sufficient. Moreover, we can
determine in linear time in the formula’s length whether φ
can be labeled by (|=∀), (|=∃), ( 6|=∀), and (6|=∃).

Note that formulas of the form �ψ are already collapse-



sufficient if ψ can be labeled by ( 6|=∃) and �ψ can be labeled
by (|=∀). Even if only one of these labellings can be derived,
monitoring �ψ on the collapsed temporal structure of an
interleaving is still useful. For example, if ψ is labeled
by ( 6|=∃) then violations that are found on the collapsed
temporal structure relate to strong violations on the set of
interleavings. However, we might miss some violations.

Example 10. We illustrate our algorithm and its inference
rules by applying it to the formula �∀x. publish(x) →
�[0,11) approve(x). We first remove some syntactic sugar and
obtain the formula �∀x.¬publish(x)∨�[0,11) approve(x). We
start by labeling the atomic subformulas. Both publish(x)
and approve(x) are labeled with (|=∃) and (6|=∀). According
to the inference rules for the temporal operator �I we
label �[0,11) approve(x) with (|=∃) and (6|=∀). We cannot
label it with (|=∀) since the interval contains 0. More-
over, the subformula ¬publish(x) is labeled with ( 6|=∃) and
(|=∀). The subformulas ¬publish(x) ∨ �[0,11) approve(x) and
∀x.¬publish(x) ∨ �[0,11) approve(x) are labeled (|=∃) and
( 6|=∃). We conclude that the formula �∀x.¬publish(x) ∨
�[0,11) approve(x) has the property (C2). It does not have
the property (C1), as shown in Example 7.

The formula �∀x. publish(x) → �[1,11) approve(x) has
both properties (C1) and (C2). The labeling starts similarly
but �[1,11) approve(x) is additionally labeled with (|=∀) since
the interval of the temporal operator does not contain 0. This
label propagates to the root of the formula. We conclude that
�∀x.¬publish(x)∨�[1,11) approve(x) also has property (C1).

Policy Approximation. In Example 7, we have seen
that we can obtain collapse-sufficient policies by strength-
ening or weakening the original policy. In the following,
we present a systematic approach along these lines by over-
approximating and under-approximating policies.

Let φ be a formula in positive normal form. We ob-
tain the weakened formula φw by replacing each atomic
subformula r(t1, . . . , tι(r)) that occurs positively in φ by
�I ♦I′ r(t1, . . . , tι(r)), for some intervals I and I′ with 0 ∈
I ∩ I′. Analogously, in the strengthened formula φs, we
replace each negative occurrence of an atomic subformula
r(t1, . . . , tι(r)) by �I ♦I′ r(t1, . . . , tι(r)).

Theorem 11. Let φw and φs be weakened and strengthened
formulas of the formula φ in positive normal form. The
formulas φ→ φw and φs → φ are valid. Moreover,
1. if φs is collapse-sufficient then φ has property (C1), and
2. if φw is collapse-sufficient then φ has property (C2).

Weakened and strengthened formulas are more likely
to be collapse-sufficient, since their subformulas of the
form �I ♦I′ r(t1, . . . , tι(r)) can be labeled with (|=∀), while
r(t1, . . . , tι(r)) can only be labeled with the weaker label (|=∃).
Simultaneously weakening and strengthening always results
in a collapse-sufficient formula. However, the resulting for-
mula does not necessarily relate to the original formula.

Figure 4. Nokia’s Data-collection Campaign

Finally, note that by inserting the temporal operators �[0,1)
and ♦[0,1) around positively occurring atomic subformulas,
the ordering of equally timestamped actions becomes ir-
relevant. This is desirable in systems where the clocks
used to timestamp the actions are synchronized but too
coarse-grained. Taking this idea further, by putting temporal
operators �[0,b) and ♦[0,b) around these subformulas with
b ≥ 1, we take into account that the timestamps in a temporal
structure are inaccurate and might differ from their actual
value by the threshold b—a situation that occurs in practice.

IV. Practical Experience

In this section, we describe the implementation of our
monitoring approach within Nokia’s Data-collection Cam-
paign [7], which is a real-world application with realistic
usage-control policies. Furthermore, we report on the mon-
itor’s performance and our findings.

Scenario. The campaign,1 which was launched in 2009,
collects contextual information from cell phones of about
180 participants. This sensitive data includes phone loca-
tions, call and SMS information, and the like. The data
collected by a participant’s phone is propagated into the
databases db1, db2, and db3. The phones use WLAN to
periodically upload their data to database db1. Every night,
the synchronization script script1 copies the data from db1
to db2. Furthermore, triggers running on db2 anonymize
and copy the data to db3, where researchers can access and
analyze the anonymized data. The participants can access
and delete their own data using a web interface to db1.
Deletions are propagated to all databases: from db1 to db2
by the synchronization script script2, which also runs every
night, and from db2 to db3 by database triggers. Figure 4
summarizes the various usages of data in the campaign.

Within the campaign, data is organized by records and
can easily be identified. When uploading data from a phone
into db1, a unique identifier is generated for each record.
This identifier together with an identifier of the participant
who contributed the data is attached to the record.

Policies. The collected data is subject to various poli-
cies in order to protect the participants’ privacy. For exam-
ple, there are access control rules and policies governing

1See http://research.nokia.com/page/11367 for details.



Table I. Policy Formalizations in MFOTL

policy MFOTL formalization
delete �∀user.∀data. delete(user, db2, data)→ user ≈ script2

ins-1-2 �∀user.∀data. insert(user, db1, data) ∧ data 0 unknown →
�[0,1s) ♦[0,30h] ∃user′. insert(user′, db2, data) ∨ delete(user′, db1, data)

ins-2-3 �∀user.∀data. insert(user, db2, data) ∧ data 0 unknown →
�[0,1s) ♦[0,60s) ∃user′. insert(user′, db3, data)

del-1-2

�∀user.∀data. delete(user, db1, data) ∧ data 0 unknown →(
�[0,1s) ♦[0,30h) ∃user′. delete(user′, db2, data)

)
∨(

(♦[0,1s) �[0,30h) ∃user′. insert(user′, db1, data))∧
(�[0,30h) �[0,30h) ¬∃user′. insert(user′, db2, data))

)

the process of propagating the data between databases. In
particular, any insertion or deletion of data in db1 must be
propagated to db2 within 30 hours, and from db2 to db3
within 1 minute. Furthermore, only the latest version of the
synchronization scripts may be used and the scripts may not
run longer than 6 hours. Finally, access to the databases is
restricted to selected user accounts and the account script1
may be used only while the script script1 is running.

We present here just a few representative policies in
Table I. Details about all the 14 policies are given in
Appendix E. The predicates insert and delete correspond
to the equally-named database commands. The arguments
of these predicates are the agent that initiated the action, the
name of the database where the action was carried out, and
an identifier of the involved data.

Note that all policy formalizations in Table I are
collapse-sufficient. However, some policies have slightly
weaker or stronger variants that are not collapse-
sufficient. For example, we obtained ins-2-3 from the
policy “all data inserted into db2 must also be inserted
into db3 within 60 seconds” by weakening the formula
�∀users.∀data. insert(user, db2, data)∧data 0 unknown→
♦[0,60s) ∃user′. insert(user′, db3, data). Intuitively, ins-2-3 is
the policy formalization that we actually intended: we
do not want to distinguish the relative ordering of the
insertions into db2 and db3 when they are logged with the
same timestamp. This is because the 1 second timestamp
granularity that is used may not be fine-granular enough:
the database triggers may be activated within milliseconds.

Logging Mechanisms. We extended the data-collection
setup with mechanisms to log policy-relevant actions. We
installed logging mechanisms for the three databases, the
script script1, and the SVN repository, assuming synchro-
nized clocks for timestamping. We now discuss details of
these logging mechanisms.

As logs for the database db1 were not available, we
implemented a proxy to inspect interactions of participants
and phones with db1. The proxy logs what data is inserted
and deleted. To observe the insertion of new data, we
monitor the network traffic when the phone uploads data. For
deletions, we use a custom front-end that logs the requests
for deleting data. For practical reasons, we could deploy
these mechanisms only for 2 out of the 180 participants.
Hence, we have only partial logging for db1, which only

Table II. Log Statistics

log # time total # insert actions # other
points # actions db1 db2 db3 actions

1 29,672 1,462,700 82,486 678,840 678,840 22,534
2 10,870 969,520 23,828 472,369 472,369 954
3 6,601 1,019,428 33,229 492,411 492,411 1377
4 20,330 962,766 12,918 468,844 468,844 11,298
5 8,114 687,402 7,067 339,674 339,647 12,160
6 9,218 630,287 4,207 311,882 311,835 1,366
7 7,327 554,733 3,251 275,208 275,199 1,014
8 86,892 936,249 47,786 400,490 400,475 87,498
9 86,764 986,249 30,118 434,268 434,259 87,604

affects 2 out of the 14 policies.
The databases db2 and db3 reside physically on a single

PostgreSQL server, which logs the SQL queries. We extract
relevant actions from these PostgreSQL logs. The main
challenge is to determine what data is processed in a query
since only the query itself is logged. Fortunately, most
relevant queries are made by automated scripts or database
triggers and contain enough information to determine what
data is used. For example, an insert or delete query initiated
by a synchronization script includes the identifier of the
used data record. Hence, a simple syntactic analysis of these
queries suffices to log the relevant actions in sufficient detail.
When the analysis failed to extract the data, we identified
the data with the constant unknown.

Evaluation. To evaluate the performance of our mon-
itor on different data sets, we split the logs into smaller
files, where each file corresponds to roughly 24 hours of
log entries. Table II provides details about the collapsed
temporal structures corresponding to these logs. Observe that
the number of insert actions is significantly larger than the
number of other actions. None of the log files used contains
more than 100 delete actions. Table III shows the monitor’s
running times and memory usage for each policy and log
file. For the experiments, we used a desktop computer with
a 1150 MHz AMD Phenom 9600B Quad-Core CPU.

Monitoring invariants like the policy delete is fast: the
monitor needed no more than 10 seconds for a 24-hours
log file. More complex policies involving temporal operators
with large time windows, take more time to monitor. For
example, for the policy ins-1-2, the monitor took more than
4 hours in some cases. The policy del-1-2 with an even
larger time window, however, could be quickly monitored.
The reason here is that the log files used contain only few
delete actions. Although we monitored the logs offline, the
running times indicate that an online monitoring approach
is possible, since the running times are less than the time
period covered by the logs. The memory requirements are
also modest. For the policies delete and ins-2-3, the monitor
does not require more than 10 MB of RAM. For ins-1-2 and
del-1-2, the monitor used under 200 MB of RAM, which is
also acceptable due to the large time windows.

Findings. The monitor reported the following policy
violations. First, some static access control policies like
delete were violated. These violations were due to testing,



Table III. Monitor Performance — Running Times / Memory Usage

policy log 1 log 2 log 3 log 4 log 5 log 6 log 7 log 8 log 9
delete 10 s / 4 MB 7 s / 4 MB 7 s / 4 MB 6 s / 4 MB 5 s / 4 MB 4 s / 4 MB 4 s / 4 MB 6 s / 4 MB 6 s / 4 MB
ins-1-2 231 m / 161 MB 44 m / 103 MB 67 m / 107 MB 24 m / 102 MB 9 m / 71 MB 5 m / 65 MB 3 m / 57 MB 73 m / 115 MB 48 m / 111 MB
ins-2-3 9 m / 8 MB 3 m / 7 MB 5 m / 8 MB 4 m / 8 MB 2 m / 8 MB 2 m / 7 MB 1 m / 7 MB 2 m / 8 MB 1 m / 6 MB
del-1-2 24 s / 176 MB 16 s / 139 MB 13 s / 87 MB 11 s / 79 MB 8 s / 58 MB 7 s / 53 MB 12 s / 111 MB 21 s / 184 MB 11 s / 102 MB

debugging, and other improvement activities going on while
the system was running. Second, an earlier version of one of
the synchronization scripts contained a bug, which was not
detected in previous tests. Only a subset of the insertions
were propagated between the databases. Third, while the
campaign was running, the infrastructure was migrated to
another server. After the migration, the deployment of the
scripts was delayed, which caused policy violations.

Overall, the main reason for these violations is that we
monitored an experimental system still under development.
In this case study the monitor proved to be a powerful
debugging tool. For commercial systems, it can detect policy
violations thereby protecting the users’ privacy and increas-
ing users’ trust in using the systems. Our findings also show
that policy monitoring makes sense even in systems where
users are honest and interested in honoring the policies.

V. RelatedWork

The usage-control architecture described by Pretschner
et al. [8] and the UCONABC architecture of Park and
Sandhu [9] both utilize monitoring techniques. However, the
two architectures are only conceptual and have neither been
deployed nor evaluated in a real-word setting.

Goodloe and Pike [10] recently surveyed the state of
the art for monitoring distributed systems. We restrict our-
selves here to the most related work. Bauer et al. [11]
examine a setting where actions are totally ordered and
system requirements are given in a propositional linear-time
temporal logic. Both assumptions are too restrictive in our
setting. However, their monitoring architecture additionally
includes a component that analyzes the cause of a failure,
which is fed back into the system. Genon et al. [12]
present a monitoring algorithm for propositional LTL, where
events are partially ordered. They use symbolic exploration
methods to cope with the interleavings of events. It is
unclear how their algorithm extends to a first-order setting.
Moreover, in our approach, we consider formulas in a richer
logic for which monitoring a single trace is sufficient. In
contrast to these works and ours, Sen et al. [13] present
a distributed monitoring approach, where multiple monitors
are implemented locally and communicate with each other.
These monitors are generated from a propositional past-time
linear-time distributed temporal logic. A potential bottleneck
is the monitors’ communication overhead.

Finally, research on checking temporal integrity con-
strains [14], [15] of stored data and temporal triggers [16] in
databases is related to our monitoring algorithm [1]. In fact,

our monitoring algorithm extends Chomicki’s monitor [14]
by handling bounded future operators. These temporal op-
erators are extremely useful for formalizing usage-control
policies, which usually contain obligations. We are not
aware of any implementation and experimental evaluation
of Chomicki’s monitoring algorithm.

VI. Conclusion
We theoretically and practically tackled the problem of

monitoring the usage of data in concurrent distributed sys-
tems. We provided means to efficiently monitor concur-
rently generated logs. We also deployed and evaluated a
monitoring architecture in a real-world application, Nokia’s
Data-collection Campaign. Our case study demonstrates the
feasibility and benefits of monitoring the usage of sensitive
data.

As future work we plan to develop monitoring techniques
for more complex systems with more agents, actions, and
databases. The challenges will be to handle less accurate and
less complete logging, and to provide monitoring algorithms
that scale up from millions to billions of log entries per day.
Our future work also includes developing monitoring tech-
niques that can also be used for policy enforcement, i.e.,
preventing policy violations.
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Appendix

A. Additional Proof Details: Intractability Results

We remark that related intractability results for LTL on
so-called partially ordered traces are given in [17]. However,
the setting is different from ours. In particular, it is unclear
how to describe the set of interleavings of two timestamped
traces using partially ordered traces as defined in [17].
Moreover, we reduce SAT and TAUT, respectively, to the
respective decision problem for proving its hardness. In [17],
the global-predicate-detection decision problem is used.

The decision problem in Theorem 3(1) is in NP as a
nondeterministic Turing machine can first guess the violating
interleaving up to the given time point and then verify its
guess in polynomial time [18]. Note that the Turing machine
does not need to guess a valuation, as the input formula
is a quantifier-free sentence and this contains no variables.
Hardness is established by polynomially reducing SAT to
the decision problem in Theorem 3(1) as shown below.
Analogously, the coNP-hardness of the decision problem
in Theorem 3(2) is shown by polynomially reducing TAUT
to it, also explained below. This problem is in coNP since
its complement is in NP.

Reduction from SAT. We show NP-hardness of the
decision problem in Theorem 3(1) by reduction from SAT.

To fix notation, we recall that a propositional formula α
over a set of atomic propositions P is satisfiable if there is
an assignment θ of propositions to truth values ⊥ (denoting
false) and > (denoting true), i.e. θ : P → {⊥,>}, such that
θ(α) = >, where θ is extended from atomic propositions
to formulas as expected. The SAT problem asks whether a
given propositional formula is satisfiable. SAT is NP-hard.

Suppose P = {p0, . . . , pn−1}, with n ≥ 0, is a set of atomic
propositions. Let S be the signature (C,R, ι) with C = {c},
R = {q0, r0, . . . , qn−1, rn−1}, and ι(qi) = ι(ri) = 1, for any
0 ≤ i < n. The two temporal structures (D̄1, τ̄1) and (D̄2, τ̄2)
over S are given by: |D̄| = {c}, cD̄ = c, τ1

i = τ2
i = i for any

i ∈ N, and for any k ∈ {1, 2} and i, j ∈ N with 0 ≤ i < n,

q
Dk

j

i =

{
{c} if k = 1 and i = j,
∅ otherwise,

r
Dk

j

i =

{
{c} if k = 2 and i = j,
∅ otherwise.

Given a propositional formula α over P, the MFOTL
formula pαq is obtained by replacing each occurrence of
a proposition pi in α with �

(
ri(c) ∧ � qi(c)

)
. Thus, given

a propositional formula α, the reduction constructs the two
prefixes of length n of (D̄1, τ̄1) and (D̄2, τ̄2) and the MFOTL
formula pαq. This reduction is linear in the size of α. Its
correctness is shown by Lemma 13. The following remarks
and lemma will be needed.
Remark. For any interleaving (D̄, τ̄) ∈ (D̄1, τ̄1) ./(D̄2, τ̄2), the
functions f1 and f2 in Definition 1 satisfy fk(i) ∈ {2i, 2i +

1} where k ∈ {1, 2}. Moreover, these functions are unique,



that is, if g1, g2 : N → N are strictly monotonic functions
satisfying conditions (1)–(3) in Definition 1 then either g1 =

f1 and g2 = f2, or g1 = f2 and g2 = f1. Furthermore, for any
strictly monotonic functions f1 and f2 satisfying conditions
(1) and (2) in Definition 1 and with f1(i), f2(i) ∈ {2i, 2i + 1}
for 0 ≤ i < n, there is a unique temporal structure (D̄, τ̄)
such that f1 and f2 also satisfy condition (3). In other words,
the functions f1, f2 determine an interleaving of (D̄1, τ̄1) and
(D̄2, τ̄2)

Lemma 12. Let α be a propositional formula, θ a truth
value assignment, v a valuation, and (D̄, τ̄) an interleaving
of (D̄1, τ̄1) ./ (D̄2, τ̄2) given by the functions f1 and f2 such
that θ(pi) = > iff f1(i) = 2i, for any i with 0 ≤ i < n. It holds
that θ(α) = > if and only if (D̄, τ̄, v, 2n) |= pαq.

Proof: We use structural induction on the form of α.
The only interesting case is the base case, the other cases
follow directly from the induction hypotheses. Thus let α =

pi ∈ P.
Suppose that (D̄, τ̄, v, 2n) |= �(ri(c)∧� qi(c)). That is, there

is a time point j ≤ 2n such that (D̄, τ̄, v, j) |= ri(c) and such
that there is a time point j′ ≤ j for which (D̄, τ̄, v, j′) |=
qi(c). Then c ∈ rD j

i and c ∈ qD j′

i . From the definition of an
interleaving and the definitions of the interpretations of the
predicates qi and ri, it follows that j = f2(i) and j′ = f1(i).
Then, as f1(i), f2(i) ∈ {2i, 2i + 1}, f1(i) , f2(i), and j′ ≤ j,
we get that f1(i) = 2i and f2(i) = 2i + 1. Thus θ(pi) = >.

Suppose that θ(α) = >. Then f1(i) = 2i and f2(i) = 2i + 1.
We have (D̄, τ̄, v, 2i) |= qi(c) and (D̄, τ̄, v, 2i+1) |= ri(c). Thus
(D̄, τ̄, v, 2i + 1) |= ri(c) ∧ � qi(c) and clearly (D̄, τ̄, v, 2n) |=
�
(
ri(c) ∧ � qi(c)

)
.

Lemma 13. Let α be a propositional formula. It holds that α
is satisfiable if and only if (D̄1, τ̄1) ./(D̄2, τ̄2) weakly violates
¬pαq at time point 2n.

Proof: Suppose first that α is satisfiable. Then there is
a truth value assignment θ such that θ(α) = >. Let (D̄, τ̄) be
the interleaving determined by the functions f1 and f2 given
by

f1(i) =

{
2i if θ(pi) = >,
2i + 1 otherwise,

and

f2(i) =

{
2i if θ(pi) = ⊥,
2i + 1 otherwise.

Let v be an arbitrary valuation. From Lemma 12, we obtain
that (D̄, τ̄, v, 2n) |= pαq, that is, (D̄, τ̄, v, 2n) 6|= ¬pαq.

Suppose now that (D̄1, τ̄1) ./ (D̄2, τ̄2) weakly violates ¬pαq
at time point 2n. Then there is an interleaving (D̄, τ̄) and a
valuation v such (D̄, τ̄, v, 2n) 6|= ¬pαq. Let f1 and f2 the be
functions determined by (D̄, τ̄) as in Definition 1. Let θ be
a truth value assignment such that θ(pi) = > if and only
if f1(i) = 2i. Using again Lemma 12, we get that θ is a
satisfying assignment for α.

Reduction from TAUT. We show coNP-hardness of the
decision problem in Theorem 3(2) by reduction from TAUT.

We recall that a propositional formula α over a set of
atomic propositions P is a tautology if θ(α) = > for any
assignment θ of propositions to truth values. The TAUT
problem asks whether a given propositional formula is a
tautology. TAUT is coNP-hard.

We use the same reduction as for the decision problem
in Theorem 3(1). The correctness of the reduction follows
from the following lemma.

Lemma 14. Let α be a propositional formula. It holds that
α is a tautology if and only if (D̄1, τ̄1) ./ (D̄2, τ̄2) strongly
violates ¬pαq at time point 2n.

Proof: Suppose first that α is a tautology. Let (D̄, τ̄)
be an arbitrary interleaving in (D̄1, τ̄1) ./ (D̄2, τ̄2) and f1, f2
be functions as in Definition 1. Let θ be a truth value
assignment such that θ(pi) = > if and only if f1(i) = 2i.
Let v be an arbitrary valuation. Using Lemma 12, we obtain
that (D̄, τ̄, v, 2n) 6|= ¬pαq. Hence (D̄1, τ̄1) ./ (D̄2, τ̄2) strongly
violates ¬pαq at time point 2n.

Suppose now that (D̄1, τ̄1) ./(D̄2, τ̄2) strongly violates ¬pαq
at time point 2n. Let θ be an arbitrary truth value assignment.
Let (D̄, τ̄) be the interleaving determined by the functions
f1 and f2 given by

f1(i) =

{
2i if θ(pi) = >,
2i + 1 otherwise,

and

f2(i) =

{
2i if θ(pi) = ⊥,
2i + 1 otherwise.

There is a valuation v such (D̄, τ̄, v, 2n) 6|= ¬pαq. Using again
Lemma 12, we get that θ is a satisfying assignment for α.
Hence α is a tautology.

B. Additional Proof Details: Derivation Rules

Figure 5 lists all the inference rules for label propagation.
Lemma 15 (see below) shows the soundness of these rules.

When considering formulas in positive normal form, as
required in Theorem 11, the Boolean operator ∨ and the
temporal operators release RI and trigger TI are seen as
primitives, instead of being defined as syntactic sugar. We
recall that ψ RI χ abbreviates ¬(¬ψ SI ¬χ) and ψ TI χ
abbreviates ¬(¬ψUI ¬χ). Figure 6 lists propagation rules for
formulas that use these operators. Their soundness follows
from the soundness of rules in Figure 5 and the mentioned
equivalences. For instance, the correctness of the rule

ψ : (|=∃) χ : (|=∀)
(ψ RI χ) ∨ (♦J ψ) : (|=∀)

0 < I, 0 ∈ J

follows from unfolding the abbreviation (ψ RI χ) ∨ (♦J ψ),
which is ¬

(
(¬ψSI ¬χ)∧ (�J ¬ψ)

)
, and the following deriva-



tion:
ψ : (|=∃)
¬ψ : (6|=∃)

χ : (|=∀)
¬χ : (6|=∀)

(¬ψ SI ¬χ) ∧ (�J ¬ψ) : (6|=∀)
0 < I, 0 ∈ J

¬
(
(¬ψ SI ¬χ) ∧ (�J ¬ψ)

)
: (|=∀)

Finally, for convenience, Figure 7 lists some inference
rules for formulas for which the main operator is one of the
temporal operators �I , ♦I , �I , and �I . These rules can be
derived from the rules in Figure 5 by simply applying the
definition of syntactic sugar. For instance, the rule

ψ : (|=∀)
�I ψ : (|=∀)

can be derived from

x ≈ x : (|=∀)
∃x. x ≈ x : (|=∀) ψ : (|=∀)

(∃x. x ≈ x) SI ψ : (|=∀)

Note that �I ψ is syntactic sugar for (∃x. x ≈ x) SI ψ.
We now show the soundness of the inference rules in

Figure 5.

Lemma 15. Let φ be a formula. If φ can be labeled
with `, then φ satisfies the invariant `, where ` ∈{
(|=∀), ( 6|=∀), ( 6|=∃), (|=∃)

}
.

Proof: Let (C̄, κ̄) be the collapse of an interleaving of
two given temporal structures.

We proceed by induction on size of the derivation tree
assigning label ` to φ. We make a case distinction based on
the rule applied to label the formula, that is, the rule at the
root of the tree. However, for clarity, we generally group
cases by the formula’s form.

For readability, and without loss of generality, we already
fix an arbitrary valuation v, an arbitrary time point i, and an
arbitrary temporal structure (D̄, τ̄) ∈ col−1(C̄, κ̄).
• We first consider the weakening rules.

– φ is labeled with (|=∀) and (|=∃). Suppose that
(C̄, κ̄, v, i) |= φ. By the induction hypothesis, φ sat-
isfies the invariant (|=∀), thus (D̄, τ̄, v, j) |= φ for any
j with τ j = κi. By the definition of (C̄, κ̄), there is
at least one j with τ j = κi. Hence φ satisfies the
invariant (|=∃).

– φ is labeled with ( 6|=∀) and with ( 6|=∃). This case is
analogous to the previous one.

• φ = t ≈ t′, where t and t′ are variables or constants. In
this case φ is labeled with (|=∀) and ( 6|=∀).
– φ is labeled with (|=∀). Suppose that (C̄, κ̄, v, i) |= φ.

Then v(t) = v(t′). Clearly, (D̄, τ̄, v, j) |= φ for any
time point j, as φ only depends on the valuation.
The invariant (|=∀) is hence satisfied.

– φ is labeled with (6|=∀). This case is analogous to the
previous one.

• φ = t ≺ t′, where t and t′ are variables or constants.
This case is analogous to the previous one.

• φ = r(t1, . . . , tι(r)), where t1, . . . , tι(r) are variables or
constants. In this case φ is labeled with (|=∃) and ( 6|=∀).
– φ is labeled with (|=∃). Suppose that (C̄, κ̄, v, i) |= φ.

Then (v(t1), . . . , v(tι(r))) ∈ rCi . As rCi =
⋃
{ j|τ j=κi}

rD j ,
there is a j with τ j = κi such that (v(t1), . . . , v(tι(r))) ∈
rD j . Therefore (D̄, τ̄, v, j) |= φ. Thus φ satisfies the
invariant (|=∃).

– φ is labeled with ( 6|=∀). Suppose that (C̄, κ̄, v, i) 6|=
φ. Then for any j with τ j = κi we have that
(v(t1), . . . , v(tι(r))) < rD j , that is, (D̄, τ̄, v, j) |= φ. Thus
φ satisfies the invariant ( 6|=∀).

• φ = ¬ψ. If ψ is labeled with `, then φ is labeled with
¬`, where ¬` is (|=∀), (6|=∀), (6|=∃), or (|=∃) when ` is
( 6|=∀), (|=∀), (|=∃), or ( 6|=∃) respectively.
– φ is labeled with (|=∀). Suppose that (C̄, κ̄, v, i) |=
¬ψ. By the induction hypothesis, ψ satisfies the
invariant ( 6|=∀). As (C̄, κ̄, v, i) 6|= ψ, we have that
(D̄, τ̄, v, k) 6|= ψ, that is, (D̄, τ̄, v, k) |= φ, for all k
with τk = κi. Thus φ satisfies the invariant (|=∀).

– The other cases are similar.
• φ = ψ ∧ χ. There are four rules to be analyzed.

– φ, ψ, and χ are labeled with (|=∀). Suppose that
(C̄, κ̄, v, i) |= ψ ∧ χ. Then (C̄, κ̄, v, i) |= ψ and
(C̄, κ̄, v, i) |= χ. By the induction hypothesis, ψ and
χ satisfy the invariant (|=∀). Hence, for all j with
τ j = κi, we have (D̄, τ̄, v, j) |= ψ and (D̄, τ̄, v, j) |= χ.
Thus (D̄, τ̄, v, j) |= φ and (D̄, τ̄, v, j) |= χ for all j
with τ j = κi. Hence, φ satisfies the invariant (|=∀).

– The other cases are similar.
• φ = ∃x.ψ. There are four rules, one for each label: if ψ

is labeled with `, then φ is labeled with `.
– ` is (|=∀). Suppose that (C̄, κ̄, v, i) |= ∃x.ψ. Then there

is a d ∈ |D̄| such that (C̄, κ̄, v[x/d], i) |= ψ. As ψ satis-
fies the invariant (|=∀), we have (D̄, τ̄, v[x/d], j) |= ψ
for all j with τ j = κi. That is, (D̄, τ̄, v, j) |= ∃x.ψ
for all j with τ j = κi. Hence φ satisfies the invariant
(|=∀).

– The other cases are similar.
• φ = ψ SI χ. We have three rules to analyze.

– φ, ψ, and χ are each labeled with (|=∀). By the
induction hypothesis, ψ and χ satisfy the invariant
(|=∀). Suppose that (C̄, κ̄, v, i) |= φ. Then, for some
j ≤ i with κi − κ j ∈ I, we have (C̄, κ̄, v, j) |= χ and
(C̄, κ̄, v, k) |= ψ for all k ∈ [ j + 1, i + 1). Let i′ be an
arbitrary time point such that τi′ = κi. As χ satisfies
the invariant (|=∀), for the largest j′ with τ j′ = κ j we
have (D̄, τ̄, v, j′) |= χ. Clearly, τi′ − τ j′ ∈ I. From the
definition of (C̄, κ̄), for any k′ ∈ [ j′ + 1, i′ + 1), there
is a k ∈ [ j + 1, i + 1) such that τk′ = κk. Then, as ψ
satisfies the invariant (|=∀), for any k′ ∈ [ j′+1, i′+1),
we have (D̄, τ̄, v, k′) |= ψ. As ψ satisfies the invariant
(|=∀), for all k ∈ [ j + 1, i + 1) and all k′ with τk′ = κk,



φ : (|=∀)
φ : (|=∃)

φ : (6|=∀)
φ : (6|=∃)

t ≈ t′ : (|=∀) t ≈ t′ : (6|=∀) t ≺ t′ : (|=∀) t ≺ t′ : (6|=∀)

r(t1, . . . , tι(r)) : (|=∃) r(t1, . . . , tι(r)) : (6|=∀)

ψ : (|=∃)
¬ψ : (6|=∃)

ψ : (|=∀)
¬ψ : (6|=∀)

ψ : (6|=∃)
¬ψ : (|=∃)

ψ : (6|=∀)
¬ψ : (|=∀)

ψ : (|=∀) χ : (|=∀)
ψ ∧ χ : (|=∀)

ψ : (|=∀) χ : (|=∃)
ψ ∧ χ : (|=∃)

ψ : (6|=∀) χ : (6|=∀)
ψ ∧ χ : (6|=∀)

ψ : (6|=∃) χ : (6|=∃)
ψ ∧ χ : (6|=∃)

ψ : (|=∀)
∃x. ψ : (|=∀)

ψ : (|=∃)
∃x. ψ : (|=∃)

ψ : (6|=∀)
∃x. ψ : (6|=∀)

ψ : (6|=∃)
∃x. ψ : (6|=∃)

ψ : (|=∀) χ : (|=∀)
ψ SI χ : (|=∀)

ψ : (6|=∀) χ : (6|=∀)
ψ SI χ : (6|=∀)

ψ : (6|=∃) χ : (6|=∀)
ψ SI χ : (6|=∃)

ψ : (6|=∃) χ : (6|=∀)
(ψ SI χ) ∧ (�J ψ) : (6|=∀)

0 < I, 0 ∈ J

ψ : (|=∀) χ : (|=∀)
ψ UI χ : (|=∀)

ψ : (6|=∀) χ : (6|=∀)
ψ UI χ : (6|=∀)

ψ : (6|=∃) χ : (6|=∀)
ψ UI χ : (6|=∃)

ψ : (6|=∃) χ : (6|=∀)
(ψ UI χ) ∧ (�J ψ) : (6|=∀)

0 < I, 0 ∈ J

ψ : (|=∃)
�I ψ : (|=∃)

ψ : (|=∃)
�I ψ : (|=∀)

0 < I
ψ : (|=∃)
♦I ψ : (|=∃)

ψ : (|=∃)
♦I ψ : (|=∀)

0 < I

ψ : (|=∃)
�I ♦J ψ : (|=∀) 0 ∈ I ∩ J

Figure 5. Inference Rules

ψ : (6|=∀) χ : (6|=∀)
ψ ∨ χ : (6|=∀)

ψ : (6|=∀) χ : (6|=∃)
ψ ∨ χ : (6|=∃)

ψ : (|=∀) χ : (|=∀)
ψ ∨ χ : (|=∀)

ψ : (|=∃) χ : (|=∃)
ψ ∨ χ : (|=∃)

ψ : (6|=∀) χ : (6|=∀)
ψ RI χ : (6|=∀)

ψ : (|=∀) χ : (|=∀)
ψ RI χ : (|=∀)

ψ : (|=∃) χ : (|=∀)
ψ RI χ : (|=∃)

ψ : (|=∃) χ : (|=∀)
(ψ RI χ) ∨ (♦J ψ) : (|=∀)

0 < I, 0 ∈ J

ψ : (6|=∀) χ : (6|=∀)
ψ TI χ : (6|=∀)

ψ : (|=∀) χ : (|=∀)
ψ TI χ : (|=∀)

ψ : (|=∃) χ : (|=∀)
ψ TI χ : (|=∃)

ψ : (|=∃) χ : (|=∀)
(ψ TI χ) ∨ (�J ψ) : (|=∀)

0 < I, 0 ∈ J

Figure 6. Inference Rules for Formulas in Positive Normal Form



ψ : (|=∀)
�I ψ : (|=∀)

ψ : (6|=∀)
�I ψ : (6|=∀)

ψ : (|=∀)
♦I ψ : (|=∀)

ψ : (6|=∀)
♦I ψ : (6|=∀)

ψ : (|=∀)
�I ψ : (|=∀)

ψ : (6|=∀)
�I ψ : (6|=∀)

ψ : (6|=∃)
�I ψ : (6|=∃)

ψ : (6|=∃)
�I ψ : (6|=∀)

0 < I

ψ : (|=∀)
�I ψ : (|=∀)

ψ : (6|=∀)
�I ψ : (6|=∀)

ψ : (6|=∃)
�I ψ : (6|=∃)

ψ : (6|=∃)
�I ψ : (6|=∀)

0 < I

ψ : (6|=∃)
�I �J ψ : (6|=∀) 0 ∈ I ∩ J

Figure 7. Derived Inference Rules

we have (D̄, τ̄, v, k′) |= ψ. Hence (D̄, τ̄, v, i′) |= ψSI χ,
and thus φ satisfies the invariant (|=∀).

– φ, ψ, and χ are each labeled with ( 6|=∀). By the
induction hypothesis, ψ and χ satisfy the invariant
(6|=∀). Suppose that (C̄, κ̄, v, i) 6|= φ and that, by
absurdity, φ does not satisfy the invariant ( 6|=∀). That
is, there is an i′ with τi′ = κi such that (D̄, τ̄, v, i′) |= φ.
Then there is a j′ ≤ i′ with τi′ − τ j′ ∈ I such that
(D̄, τ̄, v, j′) |= χ and for all k′ ∈ [ j′+1, i′+1) we have
(D̄, τ̄, v, k) |= ψ. By the definition of (C̄, κ̄), there is
a j with κ j = τ j′ . As χ satisfies the invariant ( 6|=∀),
we have that (C̄, κ̄, v, j) |= χ. Similarly, we have that
(C̄, κ̄, v, k) |= ψ for all k ∈ [ j + 1, i + 1). That is,
(C̄, κ̄, v, i) |= φ, which is a contradiction.

– φ and ψ are labeled with (6|=∃), and χ is labeled by
(6|=∀). By the induction hypothesis, ψ and χ satisfy
the invariants ( 6|=∃) and ( 6|=∀) respectively. As before,
suppose that (C̄, κ̄, v, i) 6|= φ and that, by absurdity, φ
does not satisfy the invariant ( 6|=∃). That is, for all i′

with τi′ = κi we have (D̄, τ̄, v, i′) |= φ. Consider the
largest such i′. Then there is a j′ ≤ i′ with τi′−τ j′ ∈ I
such that (D̄, τ̄, v, j′) |= χ and for all k′ ∈ [ j′ + 1, i′ +
1) we have (D̄, τ̄, v, k′) |= ψ. By the definition of
(C̄, κ̄), there is a j with κ j = τ j′ . As χ satisfies the
invariant ( 6|=∀), we have that (C̄, κ̄, v, j) |= χ. Take
k ∈ [ j + 1, i + 1) arbitrarily. If (C̄, κ̄, v, k) 6|= ψ, as ψ
satisfies the invariant (6|=∃), then there is a k′ with
τk′ = κk such that (D̄, τ̄, v, k′) 6|= ψ. This contradicts
our assumption that (D̄, τ̄, v, i′) |= φ, since such k′

must be in the interval [ j′ + 1, i′ + 1). We thus have
that (C̄, κ̄, v, k) |= ψ for all k ∈ [ j + 1, i + 1). Hence
(C̄, κ̄, v, i) |= φ, which is a contradiction.

• φ = ψUI χ. This case is analogous to the previous one.
• φ = (ψ SI χ) ∧ (�J ψ) with 0 < I and 0 ∈ J. φ and χ

are labeled with (6|=∀), and ψ is labeled by (6|=∃). By
the induction hypothesis, ψ and χ satisfy the invariants

(6|=∃) and (6|=∀) respectively. Suppose that (C̄, κ̄, v, i) 6|= φ
and that, by absurdity, φ does not satisfy the invariant
(6|=∀). That is, there is an i′ with τi′ = κi such that
(D̄, τ̄, v, i′) |= φ. Then there is a j′ ≤ i′ with τi′ − τ j′ ∈ I
such that (D̄, τ̄, v, j′) |= χ and for all k′ ∈ [ j′ + 1, i′ + 1)
we have (D̄, τ̄, v, k′) |= ψ; and for all j′′ ≥ i′ with τ j′′ −

τi′ ∈ J we have (D̄, τ̄, v, j′′) |= ψ.
By the definition of (C̄, κ̄), there is a j with κ j = τ j′ . As
χ satisfies the invariant (6|=∀), we have that (C̄, κ̄, v, j) |=
χ. Take k ∈ [ j + 1, i) arbitrarily. If (C̄, κ̄, v, k) 6|= ψ, as
ψ satisfies the invariant (6|=∃), then there is a k′ with
τk′ = κk such that (D̄, τ̄, v, k′) 6|= ψ. This contradicts our
assumption that (D̄, τ̄, v, i′) |= φ. Indeed, such a k′ must
be in the interval [ j′ + 1, i′′ + 1) where i′′ is the largest
such that τi′′ = κi. If k′ ≤ i′ then (D̄, τ̄, v, i′) 6|= ψ SI χ.
If k′ > i′ then (D̄, τ̄, v, i′) 6|= �J ψ, as 0 ∈ J. We thus
have that (C̄, κ̄, v, k) |= ψ for all k ∈ [ j + 1, i + 1). Hence
(C̄, κ̄, v, i) |= ψ SI χ.
As (D̄, τ̄, v, i′) |= �J ψ and 0 ∈ J, it follows that for all
k′ ≥ i′ with τk′ = τi′ we have (D̄, τ̄, v, k′) |= ψ. We have
seen that (D̄, τ̄, v, k′) |= ψ for all k′ ∈ [ j′ + 1, i′ + 1).
Because τ j′ < τi′ (as 0 < I), it also follows that for
all k′ ≤ i′ with τk′ = τi′ we have (D̄, τ̄, v, k′) |= ψ.
Hence (D̄, τ̄, v, k′) |= ψ for all k′ with τk′ = τi′ . As ψ
satisfies the invariant (6|=∃), we obtain that (C̄, κ̄, v, i) |=
ψ. Similarly, we obtain that (C̄, κ̄, v, k) |= ψ for all k > i
such that κk − κi ∈ J. Hence (C̄, κ̄, v, i) |= �J ψ.
We showed that (C̄, κ̄, v, i) |= φ, which is a contradiction.
Thus φ satisfies the invariant ( 6|=∀).

• φ = (ψ UI χ) ∧ (�J ψ) with 0 < I and 0 ∈ J. This case
is analogous to the previous one.

• φ = �I ψ. There are two rules to analyze. For both rules,
ψ is labeled with (|=∃). Suppose that (C̄, κ̄, v, i) |= φ.
Then there is a j ≤ i with κi − κ j ∈ I such that
(C̄, κ̄, v, j) |= ψ. As, by the induction hypothesis, ψ
satisfies the invariant (|=∃), there is a j′ with τ j′ = κ j



such that (D̄, τ̄, v, j′) |= ψ.
– φ is labeled with (|=∃). Take i′ to be the largest k

such that τk = κi. Clearly, τi′ − τ j′ ∈ I and j′ ≤ i′.
Hence (D̄, τ̄, v, i′) |= �I ψ and φ satisfies the invariant
(|=∃).

– 0 < I and φ is labeled with (|=∀). Take i′ arbitrarily
such that τi′ = κi. Clearly, τi′ − τ j′ ∈ I and, as 0 < I,
τi′ − τ j′ > 0, thus j′ < i′. Hence (D̄, τ̄, v, i′) |= �I ψ.
Thus φ satisfies the invariant (|=∀).

• φ = ♦I ψ. This case is analogous to the previous one.
• φ = �I ♦J ψ with 0 ∈ I ∩ J. There is only one rule to

consider: ψ is labeled with (|=∃) and φ is labeled by
(|=∀). Suppose that (C̄, κ̄, v, i) |= φ. Then there is a j ≤ i
with κi−κ j ∈ I and there is a k ≥ j with κk−κ j ∈ I such
that (C̄, κ̄, v, k) |= ψ. As, by the induction hypothesis ψ
satisfies the invariant (|=∃), there is a k′ with τk′ = κk

such that (D̄, τ̄, v, k′) |= ψ. Take i′ arbitrarily such that
τi′ = κi. If k′ ≥ i′ then 0 ≤ τk′−τi′ = κk−κi ≤ κk−κ j ∈ J.
As 0 ∈ J, we have τk′ −τi′ ∈ J. Thus (D̄, τ̄, v, i′) |= ♦J ψ
and, as 0 ∈ I, (D̄, τ̄, v, i′) |= �I ♦J ψ. The case when
k′ < i′ is similar. Hence φ satisfies the invariant (|=∀).

C. Additional Proof Details: Theorem 9

The implication in Theorem 9 follows directly from
Lemma 8, which in turn follows the correctness of the
derivation rules (Lemma 15) and from the following lemma.

Lemma 16. Let φ be a formula.
1. If φ satisfies the invariant (|=∀), then φ has property (C1).
2. If φ satisfies the invariant (6|=∀), then φ has property (C2).
3. If φ satisfies the invariant (|=∃), then ♦ φ has prop-

erty (C1).
4. If φ satisfies the invariant ( 6|=∃), then � φ has prop-

erty (C2).

Proof: We fix a temporal structure (C̄, κ̄).
1. Suppose φ satisfies the invariant (|=∀) and that

(C̄, κ̄, v, 0) |= φ for some valuation v. Then, for any
(D̄, τ̄) ∈ col−1(C̄, κ̄) and every j ∈ N with κ0 = τ j,
it holds that (D̄, τ̄, v, j) |= φ. By the definition of
collapsed temporal structure, we have κ0 = τ0. Hence φ
satisfies (C1).

2. This case is analogous to the previous one.
3. Suppose φ satisfies the invariant (|=∃) and that

(C̄, κ̄, v, 0) |= ♦ φ for some arbitrary valuation v. Then,
for every (D̄, τ̄) ∈ col−1(C̄, κ̄), there is some j ∈ N
with κ0 = τ j such that (D̄, τ̄, v, j) |= φ. It follows that
(D̄, τ̄, v, 0) |= ♦ φ. Hence ♦ φ satisfies (C1).

4. This case is analogous to the previous one.

Complexity of the Labeling Procedure. We now prove
the other part of Theorem 9, which states that a formula φ
can be labeled in time linear in its length, that is, in O(|φ|).

We start with some definitions and then present a simple
labeling algorithm and analyze its complexity.

For a formula φ, we define its immediate subformulas
isub(φ) to be: (i) {ψ} if φ = ¬ψ, φ = ∃x. ψ, φ =  I ψ, or
φ = #I ψ; (ii) {ψ, χ} if φ = ψ∧ χ, φ = ψSI χ, or φ = ψUI χ;
and (iii) ∅ otherwise. For a rule r, we denote `(r) the label
of the conclusion of the rule.

We assume that the data structure used to represent formu-
las is a tree corresponding to the formula’s syntax tree and
that each node in the tree also stores 4 bits representing the 4
different labels. Initially these bits are set to 0, meaning that
no label is associated with the corresponding subformula.

1 add labels(φ)
2 foreach ψ ∈ isub(φ)
3 add labels(ψ)
4 foreach rule r
5 if matches(φ, r) then
6 add label(φ, `(r))

The function matches(φ, r) checks if the formula φ pattern
matches a rule r. The order of rules is arbitrary, with the
exception that the weakening rules are checked last. So,
for instance if φ received label (|=∀), then φ will match
the appropriate weakening rule and it will also be labeled
with (|=∃). As rules have constant size, and only at most the
first two levels of the tree representing the formula φ need
to be inspected, we conclude that the function executes in
constant time.

The function add label(φ, `) simply adds the label ` to
φ. Clearly, this operation can be performed in constant time.

Note that the execution of the lines 2 and 4–6 takes
constant time: |isub(φ)| ≤ 2 for any φ, there is a fixed,
constant number of rules, and the functions matches and
add label execute in constant time. Furthermore, the func-
tion add labels is executed exactly |φ| times, once for each
subformula of φ. Hence the whole labeling procedure of φ
can be done in linear time in the size of φ.

D. Additional Proof Details: Theorem 11

We first show that φw is weaker than φ, or more precisely,
that the formula φ→ φw is valid. We proceed by structural
induction on φ.
• φ = t ≈ t′, φ = t ≺ t′, φ = ¬(t ≈ t′), φ = ¬(t ≺ t′), or
¬r(t1, . . . , tι(r)), where t, t′, and ti with 1 ≤ i ≤ ι(r) are
variables or constants. Then φw = φ, and the statement
clearly holds.

• φ = r(t1, . . . , tι(r)). Then φw = �J ♦J′ r(t1, . . . , tι(r)), for
some intervals J and J′ with 0 ∈ J ∩ J′. Let (D̄, τ̄) be
a temporal structure, v a valuation, and i a time point.
Suppose that (D̄, τ̄, v, i) |= φ. As 0 ∈ I ∩ J, we clearly
have (D̄, τ̄, v, i) |= �J ♦J′ φ, that is, (D̄, τ̄, v, i) |= φ′.

• φ = ψ ∧ χ, φ = ∃x. ψ, φ =  I ψ, φ = #I ψ, φ = ψ SI χ,
or φ = ψ UI χ. These cases follow directly from the
induction hypotheses. We only present the case φ =



ψSIχ. We have φw = ψw SIχ
w. Let (D̄, τ̄) be a temporal

structure, v a valuation, and i a time point. Suppose that
(D̄, τ̄, v, i) |= φ. Then there is a j ≤ i with τi − τ j ∈ I
such that (D̄, τ̄, v, j) |= χ and (D̄, τ̄, v, k) |= ψ for any
k ∈ [i + 1, j + 1). Using the induction hypotheses for ψ
and χ, we obtain that (D̄, τ̄, v, j) |= χw and (D̄, τ̄, v, k) |=
ψw for any k ∈ [i + 1, j + 1). Hence (D̄, τ̄, v, i) |= φw.

The proof of the dual case, that is, that the formula φs → φ
is valid, is similar. It is based on the remark that the formula(
¬ �J ♦J′ r(t1, . . . , tι(r))

)
→ ¬r(t1, . . . , tι(r)) is valid.

Finally, we prove statement (1). Statement (2) is similar.
Let (C̄, κ̄) be the collapse of two temporal structures (D̄1, τ̄1)
and (D̄2, τ̄2). Suppose that φs is collapse-sufficient and that
(C̄, κ̄, v, 0) |= φs, for some arbitrary valuation v. It follows
that (D̄, τ̄, v, 0) |= φs for any (D̄, τ̄) ∈ (D̄1, τ̄1) ./ (D̄2, τ̄2).
As φs → φ is valid, we have that (D̄, τ̄, v, 0) |= φ, for any
(D̄, τ̄) ∈ (D̄1, τ̄1) ./ (D̄2, τ̄2).

E. Additional Details on Practical Experience

In this section, we describe in detail all our policies in
Nokia’s Data-collection Campaign, their MFOTL formaliza-
tion, and the resources needed for monitoring.

Policies in Nokia’s Data-collection Campaign. We first
describe the domain and relations used for formalizing the
policies. Then we describe the policies in natural language
and give their formalization.

The domain, that is, the values that can occur as a
parameter of a system actions are the databases db1, db2,
db3, all database accounts, all data identifiers, the constant
unknown, all possible names for the synchronization scripts,
all possible subversion URLs, all possible subversion revi-
sion numbers, and the subversion status values latest, old,
mod, and nosvn.

We represent actions in the system as elements in re-
lations. We explain now the relations used. The elements
of the relations for the predicates select, insert, delete,
and update correspond to database operations with equally-
named SQL commands. The parameters are the user execut-
ing the operation, the name of the database, and an identifier
of the involved data. The elements in the relations for the
predicates start and stop indicate the starting and finishing of
a synchronization script and contain the name of the script
as their only parameter. After the script script1 starts, it logs
details about its SVN status in the relations for the predicate
svn. The parameters are the name of the script, its SVN
status determined by the command svn status -u -v,
the SVN URL, and the SVN revision number. Possible
values for SVN status are latest for the latest version, old
for an older version, mod for a locally modified version,
and nosvn if the script has not been checked out from
the subversion repository. The relations for the predicate
commit represent committing a new script version into the
subversion repository. The parameters are the SVN URL and
revision number.

Table IV. Policy Formalizations in MFOTL

policy MFOTL formalization
delete �∀user.∀data. delete(user, db2, data)→ user ≈ script2
insert �∀user.∀data. insert(user, db2, data)→ user ≈ script1

select �∀user.∀data. select(user, db2, data)→
user ≈ script1 ∨ user ≈ script2 ∨ user ≈ triggers

update �∀user.∀data.¬update(user, db2, data)

script1

�∀db.∀data. select(script1, db, data) ∨ insert(script1, db, data) ∨
delete(script1, db, data) ∨ update(script1, db, data) →(

(¬ �[0,1s) ♦[0,1s) end(script1)) S (�[0,1s) ♦[0,1s) start(script1))
)
∨

�[0,1s) ♦[0,1s) end(script1)
runtime �∀script. start(script)→ (¬ �[0,1s) ♦[0,1s) end(script)) ∧ ♦[1s,6h) end(script)
svn �∀script. start(script)→ �[0,1s) ♦[0,10s) ∃url.∃rev. svn(script, latest, url, rev)

svn2 �∀script.∀status.∀url.∀rev. svn(script, status, url, rev)→
�[1s,∞)

(
commit(url, rev′)→ rev′ � rev

)
ins-1-2 �∀user.∀data. insert(user, db1, data) ∧ data 0 unknown →

�[0,1s) ♦[0,30h] ∃user′. insert(user′, db2, data) ∨ delete(user′, db1, data)

ins-2-3 �∀user.∀data. insert(user, db2, data) ∧ data 0 unknown →
�[0,1s) ♦[0,60s) ∃user′. insert(user′, db3, data)

ins-3-2 �∀user.∀data. insert(user, db3, data) ∧ data 0 unknown →
�[0,60s) ♦[0,1s) ∃user′. insert(user′, db2, data)

del-1-2

�∀user.∀data. delete(user, db1, data) ∧ data 0 unknown →(
�[0,1s) ♦[0,30h) ∃user′. delete(user′, db2, data)

)
∨(

(♦[0,1s) �[0,30h) ∃user′. insert(user′, db1, data))∧
(�[0,30h) �[0,30h) ¬∃user′. insert(user′, db2, data))

)
del-2-3 �∀user.∀data. delete(user, db2, data) ∧ data 0 unknown →

�[0,1s) ♦[0,60s) ∃user′. delete(user′, db3, data)

del-3-2 �∀user.∀data. delete(user, db3, data) ∧ data 0 unknown →
�[0,60s) ♦[0,1s) ∃user′. delete(user′, db2, data)

In the following, we informally state the policies in natural
language and for the more involved policies, we provide
additional explanations. The MFOTL formalization of the
policies is shown in Table IV. The policies are:
• delete: Only user script2, representing the synchroniza-

tion script script2, may delete data in db2 by executing
the SQL delete command.

• insert: Only user script1, representing the synchroniza-
tion script script1, may insert data in db2 by executing
the SQL insert command.

• select: Only a limited set of users (script1, script2,
triggers) may read data from db2 by executing the SQL
select command.

• update: No SQL update commands are allowed in db2,
only insertion and deletions.

• script1: Database operations may be executed under
the user account script1 only while the script script1
is running. The motivation for this policy is that the
account script1 should only be used by the script, so
if the account is used while the script is not running,
the account may have been compromised. The database
operation can happen while the script is running, in-
cluding the boundaries. That is, the time points when
an operation happens and when the script starts or ends
may have equal time stamps. The semantics of the
S operator includes the script start, but excludes the
script end. Therefore, the script end is allowed with
the additional disjunct at the end of the formula.

• runtime: The synchronization scripts must run for at
least 1 second and for no longer than 6 hours.

• svn, svn2: The synchronization scripts are maintained
in an SVN repository. We require that when started, the
synchronization scripts are the latest version available



Table V. Monitor Performance — Running Times / Memory Usage

policy log 1 log 2 log 3 log 4 log 5 log 6 log 7 log 8 log 9
delete 10 s / 4 MB 7 s / 4 MB 7 s / 4 MB 6 s / 4 MB 5 s / 4 MB 4 s / 4 MB 4 s / 4 MB 6 s / 4 MB 6 s / 4 MB
insert 13 s / 4 MB 8 s / 4 MB 10 s / 4 MB 8 s / 4 MB 6 s / 4 MB 5 s / 4 MB 5 s / 4 MB 8 s / 4 MB 8 s / 4 MB
select 10 s / 4 MB 7 s / 4 MB 7 s / 4 MB 6 s / 4 MB 5 s / 4 MB 4 s / 4 MB 4 s / 4 MB 7 s / 4 MB 6 s / 4 MB
update 10 s / 4 MB 6 s / 4 MB 8 s / 4 MB 6 s / 4 MB 4 s / 4 MB 4 s / 4 MB 4 s / 4 MB 6 s / 4 MB 7 s / 4 MB
script1 14 s / 4 MB 9 s / 4 MB 10 s / 4 MB 9 s / 4 MB 6 s / 4 MB 6 s / 4 MB 5 s / 4 MB 9 s / 4 MB 8 s / 4 MB
runtime 12 s / 9 MB 8 s / 9 MB 8 s / 6 MB 8 s / 9 MB 5 s / 7 MB 5 s / 7 MB 4 s / 7 MB 7 s / 20 MB 7 s / 21 MB
svn 10 s / 4 MB 7 s / 4 MB 7 s / 4 MB 6 s / 4 MB 5 s / 4 MB 4 s / 4 MB 4 s / 4 MB 7 s / 4 MB 7 s / 4 MB
svn2 12 s / 16 MB 9 s / 16 MB 9 s / 16 MB 9 s / 16 MB 7 s / 16 MB 6 s / 16 MB 6 s / 16 MB 8 s / 16 MB 8 s / 16 MB
ins-1-2 231 m / 161 MB 44 m / 103 MB 67 m / 107 MB 24 m / 102 MB 9 m / 71 MB 5 m / 65 MB 3 m / 57 MB 73 m / 115 MB 48 m / 111 MB
ins-2-3 9 m / 8 MB 3 m / 7 MB 5 m / 8 MB 4 m / 8 MB 2 m / 8 MB 2 m / 7 MB 1 m / 7 MB 2 m / 8 MB 1 m / 6 MB
ins-3-2 7 m / 5 MB 3 m / 5 MB 5 m / 5 MB 4 m / 6 MB 2 m / 5 MB 2 m / 5 MB 1 m / 5 MB 2 m / 5 MB 1 m / 5 MB
del-1-2 24 s / 176 MB 16 s / 139 MB 13 s / 87 MB 11 s / 79 MB 8 s / 58 MB 7 s / 53 MB 12 s / 111 MB 21 s / 184 MB 11 s / 102 MB
del-2-3 10 s / 4 MB 6 s / 4 MB 7 s / 4 MB 6 s / 4 MB 5 s / 4 MB 4 s / 4 MB 4 s / 4 MB 6 s / 4 MB 6 s / 4 MB
del-3-2 10 s / 4 MB 6 s / 4 MB 7 s / 4 MB 6 s / 4 MB 4 s / 4 MB 4 s / 4 MB 4 s / 4 MB 6 s / 4 MB 6 s / 4 MB

in the repository (largest SVN revision number). We
use two different formalizations, svn and svn2. The
policy svn uses the status parameter of the relation
svn. The policy svn2 compares the revision number
parameter of the relation svn with the committed revi-
sion numbers obtained from the subversion log via the
commit relation. Computing the latest revision number
is done by the logging mechanism for the policy svn,
but by the monitor for the policy svn2. Monitoring
both policies allows us to compare how efficiently the
monitor copes with these different formalizations and to
observe the impact of offloading the monitor by doing
pre-computations in the logging mechanisms.

• ins-*: Data uploaded by the phone into db1 must
be propagated to all databases. In particular, ins-1-2
requires that data uploaded into db1 must be inserted
into db2 within 30 hours after the upload, unless it
has been deleted from db1 in between. Furthermore,
ins-2-3 and ins-3-2 require that data may be inserted
into db2 iff it is inserted into db3 within 1 minute. The
time limit from db1 to db2 is 30 hours because the
synchronization scripts run once every 24 hours and
can run for up to 6 hours. The time limit from db2
to db3 is only 60 seconds as this synchronization is
implemented by database triggers that start immediately
upon a change in db2. Note that these policies require
propagation of new data between db2 and db3 in both
directions. However, between db1 and db2 only one
direction is required. The reason is the incomplete
logging for db1.

• del-*: Data deleted from db1 must be consistently
deleted from all databases. The policies del-2-3 and
del-3-2 are analogous to the policies ins-2-3 and
ins-3-2, respectively. The formalization of the policy
del-1-2 is more involved: If data is deleted from db1,
then this data must also be deleted from db2 within
30 hours. However, if the data has just been uploaded
to db1 and not yet propagated to db2, then it simply
should not be propagated to db2 in the future either.
Since the propagation would happen in at most 30
hours, we can simply consider the past and the future

30 hours to determine whether data has been and will
be propagated to db2 or not.
Monitor Performance. Table V shows the monitor’s

running times and memory usage for all policies in Table IV
and all log files in Table II.

Our reason for splitting the available stream of logged
actions into smaller chunks (i.e., log files) is to evaluate
our monitor on different data sets with different charac-
teristics. Each of our chunks corresponds to a time span
of approximately 24 hours. We point out that monitoring
such chunks separately may reveal different violations than
monitoring the whole stream of actions. This is because,
policy conformance at a time point may depend on actions
that have been logged in another (timewise subsequent or
prior) chunk, as the time window of a temporal operator
may overpass the time span of a chunk. Except for the policy
del-1-2, all policy violations on the whole stream are also
detected on a chunk. However, due to splitting, additional
violations may be reported. We were not concerned about
these issues, as our main focus was on evaluating the
performance of the monitor. Moreover, we have manually
checked that all violations reported in Section IV are indeed
violations on the whole stream.


