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Abstract

Usage control requirements specify restrictions and compulsory actions that relate to the future handling of
data. The enforcement of such requirements can and must happen at different levels of abstraction. This is
because propositions in policies such as “delete,” “copy,” “play,” etc. can be assigned different semantics,
depending on the level of abstraction that is chosen. We provide a formal model for data flow tracking at
one such level, namely that of the X11 system, implement monitors that check different copy&paste policies,
and use these monitors to ensure that, for instance, screenshots of a window cannot be taken if it contains
sensitive data.
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1 Introduction

Usage control [18,11] generalizes access control to the future handling of data. Re-
quirements include both restrictions (“movie may not be played more than once,”
“do not delete within five years,” “do not copy”) and duties (“notify owner when-
ever data is accessed”, “delete after thirty days”) and hence encompass the domains
of data protection, compliance, the management of intellectual property and data in
distributed (possibly service-oriented) contexts, and also digital rights management.

Requirements are specified in so-called policies. High-level policies like those
sketched above immediately raise the question about the semantics of events such
as deletion or copying. Deletion can refer to removing a FAT entry, to overwriting
the space occupied on a hard disk twenty times, to also deleting all possible copies,
including archived copies, etc. Copying can refer to literally copying a file, copying
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the content from a file in a text editor and pasting it into another file, displaying
the content and taking a screenshot, etc. In order to enforce policies, it is necessary
to define the semantics at different levels of abstraction, including the operating
system, runtime system, infrastructure applications such as X11 or enterprise service
buses, applications such as data bases or word processors, and business processes.
It is subsequently also necessary to enforce policies at different levels of abstraction,
and to connect the different levels whenever data flows from one level (a file) to
another (a process) and yet another one (a window on a screen).

Problem
We tackle the problem of enforcing usage control policies at the X11 level. X11

is a distributed system for rendering windows. In the X11 context, data marked
as sensitive is propagated to many different containers, including network packets,
windows, properties of these windows such as their names, etc. To enforce such
policies, we must track the flow of data through the X11 system. Moreover, we
must take care of “copying” in different varieties, including marking text with the
mouse and taking screenshots.

Solution
We start by instantiating a formal data flow model to the concepts of the X11

system. We then use this model to implement a monitor that tracks data flows and
that makes it possible to prohibit and modify specific actions. For instance, if a
data item is not supposed to be copied, then taking a screenshot from a window
that contains that data will result in a black rectangle.

Contribution
We are not aware of any systems that have implemented data flow tracking at

the X11 level; nor do we know of systems that implement copy&paste policies at
this level (for a discussion of related work see §5). More importantly, we see our
contribution in the machine-level instantiation of earlier more conceptual work on
usage control and information flow tracking.

Structure
We introduce the X11 system and a general model for data flow tracking in §2.

After instantiating the model to the X11 context in §3, we describe our implemen-
tation and evaluate it in §4. We put our work in context in §5, and conclude in
§6.

2 Background

2.1 X11

The X Window system is a distributed system and a protocol for building a graphical
user interface environment on Unix-like systems. It provides a basic framework for
drawing and moving windows on a screen as well as for communicating with devices
attached to the system, including mouse and keyboard. The X system is designed to
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be used over network connections. Consequently, it consists of clients and servers.
Servers manage and render windows on one particular machine. Servers also manage
the communication between different clients which, in turn, access the information
that is managed by the server. Client applications use the X server to provide a
graphical user interface and communicate with each other via the X server. The
XWindows client/server terminology is slightly confusing because each machine that
wants to render windows runs its own X11 server: there is not one server and many
clients, as one might expect, but many servers and many clients, and the client can
run on the same or a different machine as the server. Clients use the Xlib library for
communicating with the server, either directly or by other widget toolkits libraries
that use Xlib which offers a high-level API for using the X11 protocol.

Using the X11 protocol, interaction between clients and server takes place over
sockets that we will refer to as X11 connections. Communication consists of re-
quests, replies, events and errors. Requests are sent by a client to the server to
request the execution of an action by the server. In response to some requests the
server sends back information in a reply. Events are sent asynchronously by the
server to inform clients about relevant state changes in the server. The protocol
allows clients to selectively register for specific events, such as those related to a
particular window. An error is sent in response to an invalid request.

The X server maintains resources used as basic elements in the interaction with
a client. As we will later see, these resources are the containers that potentially
carry sensitive information. Containers include windows (the whole screen area can
be split into several movable, potentially overlapping subareas, called windows),
pixmaps (memory areas in the X server that are valid destinations for a majority
of the drawing functions), atoms (unique names that clients may use for accessing
resources or for communication between different clients), attributes and properties
(variables attached to windows), cut buffers (special named, pre-defined properties
used for communication between clients), fonts (structures for representing text),
etc.

Copy&Paste
Copy&paste is supported by X11 in two ways: selections and cut buffers.

Roughly speaking, selection of data works as follows: During the “copy” phase, a
client obtains the selection (a token) by requesting it from the server. In response,
the previous selection owner looses the selection. During the “paste”-phase, a client
sends a request that specifies a property where the selected content should be stored,
together with the format into which the selected content should be converted. The
X server forwards the request to the selection owner. The selection owner converts
the selected content to the specified format, copies it to the property specified in
the request, and sends back a notification event. The selection owner has to be
available and maintain the selected data until copied to the receiving application’s
property. Otherwise, the selected data is lost. An alternative implementation relies
on an additional application, the clipboard manager, which acts as a middle man
and keeps a copy of the selected content even if the original application ceases to
exist.

In contrast to selections, cut buffers act as intermediate containers. Similarly to
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the clipboard manager case, availability of the data to be copied does not rely on
the availability of the application holding the original data.

Screenshots
A second way of copying data is to take a screenshot. This refers to copying

the graphical representation of the contents of the whole screen or a part of it, as
rendered by the X server. To take a screenshot, a client essentially sends a request
to the X server, specifying the area for the screenshot. The server returns the
graphical data.

2.2 Data Flow

We have introduced usage control as relating to the handling of data after giving
it away. Handling relates to the rendering, processing, distribution, management,
and execution of data [20]. The definition of data is slightly less evident because
the same data is usually represented in many different forms. The requirement for a
data item sent by email not to be printed relates to many different representations:
among others, this data comes as network packets, files, memory areas of an email
client, and window content managed by a window manager. The requirement most
likely relates to all these representations (which precisely is the main motivation
behind our approach to enforce usage control requirements at different levels of
abstraction). This leads to the notion of containers that store a data item. Usage
control policies for a data item will then relate to all containers that (potentially)
contain the item.

We now introduce a data flow model that boils down to a transition system
capturing the flow of data through a system. State transitions are initiated by
X11 messages. A state of the model captures (a) which data is in which container,
(b) if there are alias relations between containers—which happens, among other
things, whenever two windows overlap, and (c) under which names containers can
currently be accessed. The general idea is the following. We monitor X11 messages
and update the state of the data flow model accordingly. Enforcement mechanisms
for usage control policies then refer to the information stored in the data model and
grant or deny the execution of specific actions, including copy&paste of sensitive
text or taking screenshots of sensitive data in X11 windows. The data flow model
hence is used as an enhancement to an execution monitor at the X11 level.

The generic data flow model, which we will instantiate to the X11 system in §3,
is a tuple

(D,C, F, Σ, I, P,A, R).(1)

D is the set of data items whose usage is restricted by a policy. C is the set of
data containers in the system and F the set of constructs that are used to identify
data containers. Containers include windows, properties, messages, etc. Principals,
P ⊂ C, are those containers that store data and can invoke actions with other
containers, e.g., applications.

Σ = (C → 2D)× (C → 2C)× (F → C)(2)

is the set of states. States consist of three mappings. The storage function, s,
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captures which data is stored in which containers. The alias function, l, captures
the fact that some containers may implicitly get updated whenever other containers
do. Intuitively, if c2 ∈ l(c1) for c1, c2 ∈ C, then whenever something is written into
c1, it is immediately propagated into c2. For example, when windows are moved
in XWindows, the background of the moved window may be replaced by that of a
window that is overlapped—which we will model as an alias in §3. To treat chains of
aliases we will also use the reflexive transitive closure of the alias function, denoted
l∗. Finally, the naming function, f , maps identifiers to containers. I ∈ Σ is the
initial state of the system. The storage function of the initial state is given by the
usage policy. That is, we assume that the usage policy specifies which restrictions
apply to which data, and where that data is initially stored. A, actions, initiate
state changes, X11 messages in our context, described by a (deterministic) relation

R ⊆ Σ× P ×A× Σ.(3)

Since states are modeled as triples of functions, we need some additional notation
for specifying state changes. For a mapping m : S → T and a variable x ranging
over X ⊆ S, define m[x ← expr ]x∈X = m′ with m′ : S → T and m′(y) = expr
if y ∈ X and m′(y) = m(y) otherwise. Multiple updates for disjoint sets are
combined by function composition ◦. We will use the semicolon as syntactic sugar:
m[x1 ← exprx1 ; . . . ; xn ← exprxn ]x1∈X1,...,xn∈Xn = m[xn ← exprxn ]xn∈Xn ◦ . . . ◦
m[x1 ← exprx1 ]x1∈X1 . All replacements are done simultaneously and atomically.

3 Usage Control and Data Flow for X11

3.1 Instantiating the Information Flow Model

3.1.1 Principals
Processes are natural candidates to act as principals. Because ours is a distributed
setting, however, we cannot use process IDs but rather identify principals by IP
address and port (that is, one application can possibly be represented by several
principals): P = IPAddress × Port where we assume the carrier sets IPAddress and
Port to be given, and the same port may not be directly shared between different
processes without the help of a port management application.

3.1.2 Data Containers
Essentially, the X11 resources sketched in §2 define the set C of X11 data containers.
To quote just a few examples, the X11 resources Attributes and Properties can be
perceived as variables in programming languages and are therefore classified as
data containers. Windows are used for drawing graphic elements like pictures, text,
buttons, etc. Pixmaps are blocks of off-screen memory in the X server and consist of
an array of pixel values. X11 Connections are used by principals to send data to the
X server. These connections consist of two connected end points (ports). One port
of such a connection is considered as a data container in the X11 submodel, namely
the port where the X server reads the request from the client applications. The
other port of the connection is considered as a data container at the application’s
side, usually a socket in the Xlib (and this is treated by another instantiation of
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our generic data flow model). To send data to the X server, a principal (a process
with IP address and port) writes data into one port, and the X server reads it from
the other port of the used connection. Therefore, we consider X11 connections,
X11C ⊂ C, as data containers. Using the approach of identifying X11 connections
as data containers, network packets are considered as data elements that are stored
in the ports of a connection. Finally, we consider the (overapproximated) memory
content of each principal p ∈ P , denoted by mp.

There are many other containers that we do not have the space to discuss here,
including atoms, graphics contexts, bitmaps, colormaps, cursors, and fonts [4]. The
set of containers is C := Windows ∪ Pixmaps ∪ Colormaps ∪ Cursors ∪ Fonts ∪
Graphics Contexts ∪Atoms∪Properties ∪Attributes ∪X11C∪{mp : p ∈ P} where
we assume the sets of identifiers on the right hand side to be given.

3.1.3 Identifiers
Resources (window, pixmap, colormap, cursor, font, graphics context) are X server
resources and are identifiable by a single ID, whereas properties and attributes are
bound to particular windows. We assume a set F of identifiers to be given that
caters to both situations.

3.1.4 Actions and State Transitions
Actions are X11 messages. To define the transition relation R, we now describe
how some example actions affect the state. For reasons of space, we will restrict
ourselves to three exemplary actions (see [4] for a more complete treatment). The
initial state consists of three empty mappings.

Swap
The X server provides a function to swap or rotate the content of several proper-

ties with one function call. The content of two data containers is swapped without
knowing their content (i.e., pointers are re-directed). In the formula we express that
by not directly updating mp. After swapping, the new content of the two swapped
properties does not contain information from the previous content anymore. There-
fore, for a storage function s (the first component of the state), container c1 is
only updated with s(c2), but not with s(c1). If a client application has read one
of the involved properties prior to the swapping, the new property content is not
propagated to the client. However, the request to swap properties itself can convey
information. The client that initiated the swapping potentially sends information
to all the clients that know at least the content of one participating property. Such
a client can re-read one of the containers and compare the content to what it as-
sumes to be the content. Therefore the participating properties potentially contain
all data of the initiating client. This is specified by adding s(mp). We have

∀s ∈ [C → 2D],∀l ∈ [C → 2C ], ∀f ∈ [F → C],∀p ∈ P,∀c1, c2 ∈ Properties :

( (s, l, f), p, Swap(c1 , c2 ),

(s[u← s(c2) ∪ s(mp); v ← s(c1) ∪ s(mp)]u∈l∗(c1),v∈l∗(c2), l, f)) ∈ R.

(4)
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GetImage
Screenshots are taken by sending a GetImage request. Although the screenshot

is taken from window c2, the content of a window c1 that overlaps with window c2

is also included in the screenshot. Assuming that overlap(c1 , c2 ) is true if window
c1 overlaps with c2—information that can be queried from the X server—the state
of the system is changed in the following way: The principal that takes a screenshot
from window c gains information from all containers that overlap c. We express
that by iterating over all containers t′ that satisfy overlap(t′, c) and add s(t′) to the
updating of mp:

∀s ∈ [C → 2D],∀l ∈ [C → 2C ],∀f ∈ [F → C], ∀p ∈ P,∀c ∈Windows :

((s, l, f), p, GetImage(c), (s[mp ← s(mp) ∪ s(t)]t∈{t′|overlap(t′,c)}, l, f)) ∈ R.
(5)

MoveWindow (MvW)
Windows may be re-positioned on the screen. For the sake of our presentation

and due to the fact there is no simple request to re-position a window, we hence
introduce an abstract MvW request that only reflects the re-positioning aspect of
the more complex ConfigureWindow request. Define overlap′ like overlap with the
additional requirement that the background of c2 is referenced by c1. Moving a
window can then lead to an information flow from another window because its
background might be used for the moving window. The intuition is that every
window t that is at least partially covered by a window c refers to that window
c. We model that by adding c to the alias mapping of the window t. Similarly c

is removed from the alias mapping of a window v as soon as v is not covered by
window c anymore. We get

∀s ∈ [C → 2D],∀l ∈ [C → 2C ],∀f ∈ [F → C], ∀p ∈ P,∀c ∈Windows :

( (s, l, f), p, MvW (c), (s,

l[t← l(t) ∪ {c}; v ← l(v)\{c}]t∈{i|overlap′(c,i)},v∈Windows\{i|overlap′(c,i)}, f)) ∈ R.

(6)

The above actions all modify the s and l mappings but none of them modifies
the f mapping. Due to space limitations we omit an action that also modifies the
f mapping. One example is the InternAtom request that is used to register an
atom-string pair at the X server.

3.2 Usage Control Policies

We have implemented a monitor that allows to intercept and possibly block, add,
and modify X11 messages. The decision on whether or not such an action takes
place also depends on where sensitive data has flown: we need to know that sensitive
information is displayed in a window in order to prohibit screenshots only when
necessary. To do so, we implemented the data flow model and update its state by
tracking the data flow induced by the X11 messages. We consider it convenient
to configure—rather than re-compile—an X11 monitor for usage control by means
of policies. Such policies specify rules that consist of conditions and actions. For
simplicity’s sake, we assume rules to be non-conflicting in this paper. Conditions can
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relate to the mere presence of particular messages (e.g., forbid taking screenshots
altogether) and also to a complex state. This complex state may contain information
about tracked data flows (e.g., forbid taking screenshots from windows with sensitive
data). At present, we do not specify the initial pieces of data that have to be
tracked—and that are hence considered sensitive—within the policies. Instead, the
human user uses a helper application that allows him to click on a data container
on the screen (e.g. a textfield in a window). This click tells the system that the
data stored in this data container is sensitive and has, from now on, to be traced.

Conditions
Conditions are based on requests, events, or replies. A condition specifies the

kind of request, event, or reply and specific values of the action that have to be
matched. This kind of specification is static and not appropriate in all situations.
Conditions can therefore be extended to also access a more complex state of the
system than just the matching of certain values in request, event, or reply packets.
Examples of criteria that are currently implemented include the following. Will
data be stored in a cut buffer? Is the classification (§4) of the data stored in the
intercepted network packet higher than a given threshold value (the implementation
of the monitor maintains a mapping from containers to classifications that is boot-
strapped by explicitly clicking on sensitive elements, as discussed above)? Is the
classification of the data to be copied higher than the classification of the window
where the data should be pasted to?

Actions
The action part is executed if the respective condition holds. Network packets,

i.e., the X11 messages, can be deleted or modified. Additional network packets can
also be inserted. The content of these network packets can be specified in a static
and/or dynamic way. The new values of the network packet (content) can either be
hard-coded as a constant in the security policy file or be computed from the content
of the current network packet that matches the condition.

Example
For space reasons, we do not provide schema definitions here but rather resort

to an explanation by example. Consider the sample policy in Listing 1 restricting
taking a screenshot of information with a classification level of at least 2. For sim-
plicity we assume that information may only flow using the copyArea request. This
sample policy requires two low-level policies. The first policy (line 4-13) is needed
to intercept each GetImage request. It states that taking a screenshot is denied (a
black retctangle is returned) whenever information is contained in the screenshot
that has a classification level of at least 2 (line 6). A screenshot is denied by modi-
fying the attribute planeMask to 0 (line 10). In order to let the monitor know the
classification of the data in each container, and therefore also the classification of
the screenshot, a second policy (line 1-3) is needed. It states that flow and classifi-
cation information of every copyArea request has to be tracked. This information
is tracked if the corresponding registerFlow and registerClassification direc-
tives are set to 1 (line 2). The first policy does not specify additional actions because
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for tracking this information neither a copyArea request has to be modified, nor do
we have to add or delete X11 messages.

1 <Pol icy>
2 <Condit ion type=”CopyArea” r eg i s t e rF l ow=”1” r e g i s t e r C l a s s i f i c a t i o n=”1”></Condition>
3 </Pol icy>
4 <Pol icy>
5 <Condit ion type=”GetImage” r eg i s t e rF l ow=”1” r e g i s t e r C l a s s i f i c a t i o n=”1”>
6 <thresholdValue >2</thresholdValue>
7 </Condition>
8 <Actions>
9 <Modify type=”GetImage”>

10 <planeMask>0</planeMask>
11 </Modify>
12 </Actions>
13 </Pol icy>

Listing 1: Screenshot Policy

4 Implementation

Clients can be executed on local and remote machines. Remote machines are not
necessarily under the same control as the X server. An application connects to the
X server by opening a TCP or DECNet connection or a Unix socket. The monitor
can be implemented both at the client and the server side of the X11 connections.
Implementing it at the client side implies that the Xlib library has to be wrapped or
monitored. This approach is convenient when an application is dynamically linked
to Xlib and gets more difficult in case of static linking. However, our approach relies
on a modification of the Xmon tool (ftp://ftp.x.org/contrib/devel_tools/)
that we use to wrap the X server rather than all clients. Xmon was conceived for
debugging X11 applications at the level of the X core protocol; it essentially allows
to monitor X11 network packets. Because our monitor is implemented as a wrapper
application it provides the following facilities. Incoming packets from both client
and server can be intercepted, i.e., stored in a queue within the X11 monitor. Before
such a network packet leaves the queue, the content of the packet can be inspected,
analyzed, and modified. A special case of modifying a network packet is to delete
it by modifying it into a NoOperation request. Insertion of messages is possible by
adding elements to the queue.

Several mechanisms can be used to copy data between applications (§2). The
idea behind our implementation is to use the fact that these data flow mechanisms
boil down to sequences of requests and events at the level of the X protocol (an
alternative consists of considering states rather than sequences of messages [9]). To
track data flow within the X window system, we maintain a classification mapping,
Classification : C → N0 , in addition to the three mappings that constitute the state
of the data flow model. This mapping assigns classification levels (natural numbers)
to data containers. The X11 monitor updates the state if it intercepts a request
or event and if the policy specifies that the data flow and classification information
for that request or event has to be tracked. It extracts all necessary information
from the action (i.e., references to data containers) and uses this information to
update the mappings. Monitoring every single data flow of course results in a huge
amount of data. Therefore as part of the configuration of the X11 monitor one may
specify for each request or event whether or not information flow or classification
information should be monitored (§3.2).
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4.1 Example Application 1

The first application denies taking a screenshot if the respective window contains
sensitive information. Several windows may be visible in a screenshot, and one win-
dow usually consists of several subwindows. We assume that a screenshot contains
sensitive information if one of the windows visible in the screenshot has a classifica-
tion of at least x, where we assume that a classification of x is more sensitive than a
classification of x−1. The classification of a window is computed as the maximum of
all its subwindow classifications. If the X11 monitor intercepts a GetImage request,
it checks if a window with classification of at least x is contained in a screenshot
(information of another window may be contained in the screenshot because that
window may overlap). If so, the X11 monitor modifies the planeMask parameter of
the corresponding GetImage request so that the X server returns a black rectangle
which contains no (valuable) information, except for the size of the window.

As an example, assume three different distinct windows w1,w2, and w3 on the
screen. Data can be exchanged between them by sending CopyArea requests. In the
initial state of this scenario, data stored in window w1 is sensitive, whereas data in
w2 and w3 is non-sensitive. In our implementation, this is made explicit by a helper
application that allows to classify windows by clicking on them. The policy specifies
that a screenshot must not be taken from a window that stores sensitive data.
Therefore, in the initial state, a screenshot is denied from w1, but is allowed from
w2 and w3. In the next step, the data of w1 is copied to w2, and as a last step, from
w2 to w3, via a CopyArea request. After this information flow from w1 to w3 over
w2 a screenshot must not be taken from any of the three windows because they all
store sensitive data now. Our X11 monitor implements this policy by intercepting
the CopyArea request. It extracts information about the source and destination
containers and uses the classification of the source container to possibly update
that of the destination container. In addition it intercepts the GetImage request
and possibly modifies the planeMask parameter as discussed above, resulting in a
black rectangle.

4.2 Example Application 2

The second example application, which we consider fully independently of the first
one, is an enforcement mechanism for copy&paste. Consider an application A that
displays sensitive data in its window. Let this sensitive data currently be selected
and ready to be pasted to another application by pressing the middle mouse button.
Our first policy is as follows. Pasting is denied if the destination application is not
monitored by the X11 monitor (because e.g. it directly connects to the X server).
This allows to monitor only the participating rather than all applications. If an
application is monitored, pasting is allowed if the application already displays sensi-
tive data as well. This prevents sensitive text from being merged with non-sensitive
text. The X11 monitor enforces this policy by intercepting SelectionRequest
events which are forwarded by the X server to application A. The monitor checks
if the requesting application is monitored, and whether the window where the data
is to be pasted also displays sensitive data. If not, the monitor sends a negative
SelectionNotify event to the requesting application; it otherwise forwards the
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SelectionRequest event to application A.
We now consider a Chinese Wall policy, again relying on three windows w1,

w2, and w3. Each window can communicate with either of the two remaining
windows, but not with both of them. As an example, if w1 first communicates with
w2, this communication is allowed. If w1 subsequently starts a communication
with w3 as well, this is denied. We again assume that communication in this
scenario is implemented by the CopyArea request of the X protocol. The X11
monitor extracts information about the source and the destination drawable of the
request. Furthermore it stores information about the destination drawable in the
source drawable and vice versa. If the X11 monitor recognizes for a source data
container that it wants to communicate with one of the two remaining windows
but has already communicated with the respective other one, the CopyArea request
is blocked. In case the source data container has at most communicated with the
destination window of the current request so far, the request passes unmodifed.

4.3 Performance Overhead

To measure the monitor’s impact we perform several copy-actions in OpenOffice
so that data is copied from OpenOffice to a (distinct) clipboard application. As
a simple experiment, we execute a macro in OpenOffice that (1) goes to the be-
ginning of the current line, (2) inserts the current time, expressed as seconds
and microseconds since 1970/01/01, (3) selects the inserted text, (4) copies it
to the external clipboard manager and (5) inserts a new paragraph. After wait-
ing 1s, the macro repeats tasks 1 to 5 fifty times to get a more accurate aver-
age value. At the same time we modified the xclipboard application (contained
in https://launchpad.net/ubuntu/hardy/+source/x11-apps/7.3+1/) so that it
compares the times before and after receiving and displaying the copied value.

To measure the overhead, the macro is executed as described above with and
without monitoring. In the monitored case, every X11 message has to pass through
the (wrapper) monitor that, by virtue of the corresponding policy, intercepts
all SetSelectionOwner, ConvertSelection, and ChangeProperty requests and
SelectionRequest events. For each intercepted request or event the X11 moni-
tor checks if the condition specified in the policy file evaluates to true. To finally
allow the copy action between OpenOffice and the clipboard manager, the policy
is configured in such a way that none of the conditions evalute to true and each
intercepted network packet is forwarded as usual. The X11 monitor also tracks the
classification of the current selection if it intercepts a SetSelectionOwner request.

Copy actions take an average of 15ms without and 402 ms with monitoring. The
overhead is (402-15)/15=2580%. To put this number in context, monitoring at the
Java code level incurs an overhead of up to 680000% [1] even without information
flow tracking, at the system call level of up to 270% [9], at the Java bytecode level of
up to 7000% [17]. The concrete overhead is context-specific because it is determined,
among others, by the number of intercepted requests and events, whether the X11
monitor communicates with other components of the system, and the additional
actions performed upon a matching condition. Moreover, the ChangeProperty re-
quest is not only used for copying but for other actions as well, e.g., write any kind
of property.
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5 Related Work

Usage control has been discussed by several authors [18,3,2,10]. Compared to com-
monly used information flow models like [6,16] our model is explicitly tailored to
dynamic information flow analysis and explicitly includes the notion of aliases. [9]
discusses how usage control policies can be cast in terms of information flow policies.

Information flow frameworks have been implemented at various levels of ab-
straction, including x86 CPU instructions [5], Java [8,17], operating systems [7],
etc. These approached do not consider the more general problem of enforcing
usage control requirements. An overview of usage control enforcement mecha-
nisms, without considering information flow, is presented in [20]. The Adobe
Reader (http://www.adobe.com/de/products/reader) can disallow printing or
copying via copy-paste the contents of a pdf document based on rights specified
within the document. Using the Windows RMS (http://www.microsoft.com/
windowsserver2003/technologies/rightsmgmt/default.mspx) system, printing
and copy-pasting can also be disallowed for newer Microsoft Office products. Com-
pared to our approach, both solutions modify the application that interprets the
data while we insert a monitor that is transparent to existing applications.

Security monitors that also act as enforcement mechanisms have been discussed
by Schneider et al. [22]. The enforced information flow-related policies are restricted
to explicit information flow [6], hence are properties of a trace and EM-enforceable.
The kinds of enforcement mechanisms used in this paper – modification, deletion
and insertion of x11 network packets – implement the idea of edit automata [14]
and have been independently discussed elsewhere [20,19].

[12] describes three approaches to prevent capturing sensitive information on
a screen: 1) modifying the API of the windowing system on a Windows system
2) modifying the API and display driver to ensure that content is exchanged in
encrypted form between the application and the display driver; and 3) modifying
the API and the graphics hardware to ensure that the content is exchanged in
encrypted form between the application and the hardware. When compared to
our work, these approaches have to modify existing applications as well as parts of
the system and hardware. [13] discusses securing the X system with SELinux by
placing the X server into a trusted domain and controlling critical X11 objects with
SELinux mechanisms. In contrast to our approach, this requires modifying the X
server and using a special window manager. XCB [15] is a replacement library for
Xlib to secure the X system. When compared to our approch, all application have
to be modified to use the new library rather than just have their communication
with the X server pass through a monitor.

6 Conclusions

Usage control policies relate to data with many different representations. To enforce
them, it is necessary to keep track of all those containers that potentially contain
the data item. This motivates the introduction of our abstract data flow model.

Because high-level (natural-language) usage control requirements can be inter-
preted at different levels of abstraction, enforcement necessarily has to be imple-
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mented at these different levels. Motivated by different semantics of “copying” a
data item, we have instantiated the abstract data flow model to the XWindows
system. Our implementation transparently runs on top of an X11 server which
hence needs not be modified. The presented work is one step towards our goal of
usage control enforcement within and across all the layers of a computer system. As
example applications, we have shown how to prohibit doing copy&paste as well as
screenshots of sensitive data, and have provided some evidence that the performance
overhead is about 2580% in first basic experiments.

Our work has several limitations. To start with, we do not discuss the flow of
data in-between different levels of abstraction, e.g., from the operating system or a
Java virtual machine to an application. Moreover, our model is limited to explicit
information flow. Implicit flows are not covered, mainly because the notion of a
conditional is not entirely clear at the level of X11. Secondly, our implementation
currently intercepts only a subset of all X11 requests and events. In a later step
this implementation will be extended to cater to other X window mechanisms as
well, e.g., Drag and Drop. Thirdly, the basis for our considerations is the X11
protocol. At the same time the clients usally make use of the xlib library which
is not monitored in our approach; this would be another level to be monitored.
Monitoring xlib calls is relevant because if, for instance, a human user uses an input
device (keyboard, mouse, etc.) this potentially leads to state modifications within
the xlib part of the application. Only some of these state modifications trigger a
request or event that is observable at the X protocol level. Therefore for a more
fine-grained approach, it is important to monitor the xlib part of the application
as well. This has an important consequence in terms of distinguishing copy&paste
functionality within one [21] and between different applications, the latter being the
subject of this paper. A further related limitation is that the X core protocol can
be extended to provide new actions to the clients, e.g., Graphical Tool Kits. An
X11 monitor has to handle such extensions as well. Fourthly, because we define the
semantics of copy&paste as a sequence of events, it is of course possible that we have
missed specific sequences that also allow to do copy&paste (for a state-based rather
than event-based approach, see [9]). Fifthly, the problem of how to make sure that
the enforcement system actually runs on a system is outside the scope of this paper;
we consider trusted computing technology to be a promising candidate in solving
this problem. Finally, the instantiation of the general data flow model to the X11
and other levels leads to an overapproximation of the mapping from containers to
data: it represents potential, not factual, containment relations. We expect this
phenomenon—that is also witnessed by the interest in declassification strategies in
many approaches in the information flow community—to become relevant when we
start connecting different levels of abstraction.

We are aware that full usage control enforcement is an ambitious goal, that there
always is a chance that mechanisms are bypassed, and that we will always have to
face the problem of media breaks, e.g., when a screen is photographed. However,
we believe that in contrast to DRM scenarios, there are many application scenarios
where 100% enforcement is not absolutely necessary, e.g., in semi-trusted contexts
with document management within one company. We are currently working on
implementations at different levels of abstraction, including the level of word pro-
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cessors, the Java runtime system, and the operating system. We are also working
on connecting these levels. One short-term goal, for instance, is to connect the
X11, operating system [9], and word processor [21] levels for seamless enforcement
of copying requirements within one document, between several documents, and be-
tween the word processor and other applications [4].
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