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Abstract— The anonymization of SNMP traffic traces requires
an IP address anonymization scheme which is prefix-preserving
and lexicographical-order-preserving. We present an anonymiza-
tion scheme satisfying these two requirements which has been
derived from the prefix-preserving cryptography-based scheme
Crypto-PAn. We formally prove the correctness of the scheme
and we describe an embeddable implementation. Limits of the
proposed anonymization scheme and some security aspects are
discussed as well.

I. INTRODUCTION

The Simple Network Management Protocol (SNMP) [1] is

widely deployed for network monitoring, event notification,

and to some lesser extent for device configuration and control.

In order to utilize more standard software components and

to simplify the integration of management interfaces, there is

currently a trend to introduce new XML-based protocols for

network management [2].

While designing new network management protocols or

improvements of the SNMP standards, it is important to

understand the impact on the network in terms of bandwidth

and latency as well as the impact on devices in terms of CPU

and memory requirements. Comparative studies such as [3]

will greatly benefit from accurate models how SNMP is used

in real-world production networks. In order to develop such

models, it is required to obtain and analyze SNMP traffic traces

from several different production networks.

By its design, SNMP typically requires multiple protocol

operations to achieve a single logical operation (e.g., retrieving

a projection of a table). To reconstruct logical operations, it is

necessary to analyze sequences of SNMP interactions between

two SNMP engines. Furthermore, it is necessary to analyze the

payload contained in SNMP messages and not just the message

headers since the headers alone are not sufficient to determine

where logical operations (e.g., a table retrieval) start and end.

Since the payload of SNMP messages contains large

amounts of sensitive information, it is highly desirable to

anonymize traces before they are given to researchers for

further analysis. Existing standard techniques to anonymize

network and transport layer packet headers cannot be applied

directly since it is required to anonymize the payload of SNMP

messages, including the variable names and their values.

The SNMP protocol operations operate on a lexicographi-

cally ordered list of variables. To be able to infer from a traffic

trace where a logical operation starts and where it ends, it is

necessary to look at the lexicographic order of the variables

in the payload because the variable names of tabular objects

are constructed from the values of so called index columns.

As a consequence, anonymization functions applied to traffic

traces must preserve SNMP’s lexicographical-ordering prop-

erty. In particular, all data encoded in variable names must be

anonymized in such a way that the lexicographical-ordering

of the variable names does not change.

The requirement to preserve lexicographical-ordering sets a

clear constraint on the anonymization functions that can be

applied to data types that are used as table index components.

For IP addresses, it is in addition important to preserve the

prefix relationships since IP forwarding relies on a longest-

prefix-match. There are several widely deployed MIB modules

where IP addresses are used as part of variable names and

where lexicographical-ordering must be preserved in order to

understand how traffic would be forwarded in a given network

(e.g., ipCidrRouteTable of the IP-FORWARD-MIB [4],

tcpConnTable of the TCP-MIB [5], ipAddrTable of

the IP-MIB [6]).

This paper investigates on the existence and feasibility

of a prefix-preserving and lexicographical-order-preserving IP

address anonymization scheme that can be applied to SNMP

traces. The rest of the paper is structured as follows. Section

II reviews a cryptography-based prefix-preserving address

anonymization scheme which forms the basis of the work

described in this paper. Section III introduces the prefix-

and lexicographical-order-preserving IP address anonymiza-

tion scheme and formally proves its correctness. Some security

aspects are discussed in Section IV. An implementation in

form of a C library called libanon is described in Section

V while Section VI outlines how the anonymization functions

are used in a tool-set to analyze SNMP traffic traces. Related

work is discussed in Section VII before the paper concludes

in Section VIII.

II. PREFIX-PRESERVING IP ADDRESS ANONYMIZATION

Jun Xu, Jinliang Fan and Mostafa H. Ammar have shown

that prefix-preserving IP address anonymization functions al-

ways follow a canonical form [7], [8]. In this paper, we follow

the notation introduced by these authors. This section formally

defines prefix-preserving anonymization and is adapted from

[7].



Definition 1 (Prefix-preserving anonymization). Two IP ad-
dresses a = a1a2 . . . an and b = b1b2 . . . bn share a k-
bit prefix (0 ≤ k ≤ n) if a1a2 . . . ak = b1b2 . . . bk and
ak+1 �= bk+1 when k < n. An anonymization function F
is defined as one-to-one function from {0, 1}n to {0, 1}n. An
anonymization function F is prefix-preserving if given two IP
addresses a and b that share a k-bit prefix, F (a) and F (b)
share a k-bit prefix as well.

Let us consider a geometric interpretation of the prefix-

preserving anonymization. Please note that the full IP address

space can be represented by a complete binary tree. For IPv4

addresses this tree would have height 32, while for IPv6 it

would be of height 128. Each IP address is then represented

by a leaf node. Furthermore, each node corresponds to a

bit position (indicated by the height of the node) and a bit

value (indicated by the branch direction from its parent node).

Addresses present in the unanonymized traffic trace are then

represented by a subtree of the complete binary tree. Let’s

call this subtree the original address tree. Let us consider an

example with 4-bit addresses for simplicity. Figure 1(a) shows

the original address tree (only addresses from the trace).
A prefix-preserving function then specifies a binary vari-

able for each non-leaf node (including the root node). This

variable decides if the corresponding bit gets “flipped” during

anonymization or not. The anonymization function then rear-

ranges the original address tree into an anonymized address
tree. The anonymization function with its variables deciding

the flipping is shown in Figure 1(b) and an anonymized

address tree is shown in Figure 1(c). It should be clear that

the described anonymization function is prefix-preserving.

Theorem 1 (Canonical Form Theorem). Let fi be a function
from {0, 1}i to {0, 1} for i = 1, 2, . . . , n − 1 and f0 be a
constant function. Let F be a function from {0, 1}n to {0, 1}n

defined as follows. Given a = a1a2 . . . an, let

F (a) := a′
1a

′
2 . . . a′

n (1)

where a′
i = ai⊕fi−1(a1, a2, . . . , ai−1) and ⊕ is the exclusive-

or operation, for i = 1, 2, . . . , n. Then F is a prefix-
preserving anonymization function and every prefix-preserving
anonymization function necessarily takes this form.

Please note that there is a natural one-to-one mapping

between the canonical form of the anonymization function and

its graphical representation. Each node in the anonymization

tree, corresponding to a prefix a1a2 . . . ak, will be labeled

“flip” or “no flip” when fk(a1a2 . . . ak) = 1 or 0, respectively.
The proof of Theorem 1 can be found in [7]. An implemen-

tation of the anonymization scheme using the Rijndael cipher

is available under the name Crypto-PAn [9].

III. PREFIX- AND LEXICOGRAPHICAL-ORDER-PRESERVING

IP ADDRESS ANONYMIZATION

A prefix-preserving and lexicographical-order-preserving

anonymization function clearly has to be of the canonical form

described by Theorem 1. In addition, it has to take into account

the lexicographical order.

Definition 2 (Lexicographical order on IP addresses). Let
a = a1a2 . . . an and b = b1b2 . . . bn be two IP addresses
(of the same length) where ai’s and bi’s are bits. Then a
lexicographical order <l is defined by

a <l b ⇔ (∃m > 0)(∀i < m)(ai = bi) ∧ (am < bm) (2)

Note that the definition above only covers the cases where

both IP addresses are of the same length (e.g., comparing two

IPv4 or two IPv6 addresses, but not comparing an IPv4 with

an IPv6 address).

Definition 3 (Lexicographical-order-preserving anonymi-

zation). An anonymization function F is a one-to-one function
from {0, 1}n to {0, 1}n. F is lexicographical-order-preserving
if given two IP addresses a and b we have

a <l b ⇒ F (a) <l F (b)

To preserve the lexicographical order of the anonymized IP

addresses, we have to look at how the address space is used

by addresses in the trace.

Definition 4 (usedi). Let usedi be a function from {0, 1}i

to {0, 1} for i = 1, 2, . . . , n. The function usedi is defined
recursively

usedi(a1a2 . . . ai) = ( usedi+1(a1a2 . . . ai0)
∨usedi+1(a1a2 . . . ai1) ) (3)

where usedn(a1a2 . . . an) is 1 if the IP address a1a2 . . . an

is in the traffic trace and 0 otherwise. The function usedi

determines if any IP addresses in the subtree below the ai bit
are used.

Obviously, in order to determine the values for usedi, we

need to know all the IP addresses that should be anonymized.

We can extend the example from Figure 1 with usedi. Let

the addresses and original address tree be the same as in the

previous example. Clearly, all nodes in the original address

tree have usedi() = 1. Obviously, flipping a bit for which both

child nodes have usedi = 1 (each subtree under child nodes

contains at least one IP address) breaks the lexicographical

order. However, if one of the child nodes has usedi = 0
(there is no IP address from that particular subtree present

in the trace), flipping the corresponding bit does not break

lexicographical order. Figure 2(a) shows which bits can be

flipped by the anonymization function based on the values

of usedi. We can now combine the previous anonymization

function with usedi (information on which bits can be flipped)

to obtain a restricted version of the previous anonymization

function — not all of the bits can be flipped any more.

This restricted anonymization function is shown in Figure

2(b) and the anonymized address tree (using the restricted

anonymization function) is shown in Figure 2(c).

Theorem 2 (Prefix-preserving and lexicographical-order-pre-

serving Anonymization). Let fi, f ′
i be functions from {0, 1}i

to {0, 1} for i = 1, 2, . . . , n − 1 and f0,f ′
0 be constant
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(a) original address tree
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(b) anonymization function fi
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(c) anonymized address tree

Fig. 1. Geometric interpretation of the prefix-preserving anonymization function as defined in [7]. The left part (a) represents nine addresses taken from a
4-bit address space as a binary tree. The middle part (b) shows a randomly chosen anonymization function, i.e., a set of nodes in the binary tree that are
flipped to obtain anonymized addresses. The right part (c) shows the resulting 4-bit addresses produced by applying the anonymization function fi from (b).
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(a) bits that can be flipped
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(b) anonymization function f ′
i
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(c) anonymized address tree

Fig. 2. Geometric construction of the prefix- and lexicographical-order-preserving anonymization function. The left part (a) shows the nodes that can be
flipped to obtain anonymized addresses that are lexicographic-order-preserving. The middle part (b) shows the combination with the nodes that should be
flipped according to the prefix-preserving anonymization function shown in Figure 1 (b). The right part (c) shows the resulting 4-bit addresses produced by
applying the anonymization function f ′

i from (b).

functions. Let F be a function from {0, 1}n to {0, 1}n defined
as follows. Given a = a1a2 . . . an, let

F (a) := a′
1a

′
2 . . . a′

n (4)

where
a′

i = ai ⊕ f ′
i−1(a1, a2, . . . , ai−1) (5)

for i = 1, 2, . . . , n and

f ′
j(a1, . . . , aj) = fj(a1, . . . , aj)∧
¬ (usedj+1(a1, . . . , aj , 0) ∧ usedj+1(a1, . . . , aj , 1)) (6)

for j = 1, . . . , n − 1. For the case j = 0 (i = 1) we have

f ′
0 = f0 ∧ ¬ (used1(0) ∧ used1(1)) (7)

Then we claim F is a prefix-preserving and lexicographical-
order-preserving anonymization function.

f ′
i is similar to fi except that it takes into account which

parts of the address space are used. As we will see later, this

is sufficient for the lexicographical-order-preserving property.

Please note that the lexicographical-order-preserving property

holds only for IP addresses used in the trace, so all IP

addresses need to be known beforehand. Trying to anonymize

an IP address not in the trace when usedi was generated might

break the lexicographical order.

Proof. To show that F is prefix-preserving, it is sufficient to

observe that a′
i = ai ⊕ f ′

i−1(a1, a2, . . . , ai−1) is of the form

as required by Theorem 1 and hence F is prefix-preserving.
To show that F is lexicographical-order-preserving, let a,b

be two IP addresses of length n-bits, sharing a k-bit prefix

(ai = bi for i ≤ k and ak+1 �= bk+1 = ¬ak+1 if k < n).
For i ≤ k we have

a′
i = ai ⊕ (fi−1(a1, . . . , ai−1)∧
¬ (usedi(a1, . . . , ai−1, 0) ∧ usedi(a1, . . . , ai−1, 1)))
= bi ⊕ (fi−1(b1, . . . , bi−1)∧
¬ (usedi(b1, . . . , bi−1, 0) ∧ usedi(b1, . . . , bi−1, 1)))



= b′i

If k = n then a = b and hence also F (a) = F (b), so

the lexicographical order is preserved. Let’s consider the case

where k < n and hence a �= b. Without loss of generality

assume a <l b. It follows that ak+1 < bk+1 ⇒ ak+1 =
0, bk+1 = 1. Then for k + 1 we have (from equations 5 and

6)

a′
k+1 = ak+1 ⊕ (fk(a1, . . . , ak)∧

¬ (usedk+1(a1, . . . , ak, 0) ∧ usedk+1(a1, . . . , ak, 1))) (8)

If fk(a1, . . . , ak) = 0, then from equation 8 we have

a′
k+1 = ak+1 ⊕ 0 = ak+1 and bk+1 = b′k+1. Hence a <l

b ⇒ F (a) <l F (b).
If fk(a1, . . . , ak) = 1, then we have to consider four

possible cases for the values of usedk+1 in equation 8. Please

note that since a1 . . . ak = b1 . . . bk we have

usedk+1(a1, . . . , ak, 0) = usedk+1(b1, . . . , bk, 0)

and

usedk+1(a1, . . . , ak, 1) = usedk+1(b1, . . . , bk, 1) .

First, consider the case usedk+1(a1, . . . , ak, 0) = 0 and

usedk+1(a1, . . . , ak, 1) = 0. The values of usedi indicate that

no IP address from the subtree below a1 . . . ak is present in the

trace. Therefore, preserving lexicographical-ordering between

a and b (both unused in the trace) is not necessary and the

ak+1, bk+1 bits may be flipped.

Next, consider the case usedk+1(a1, . . . , ak, 0) = 0 and

usedk+1(a1, . . . , ak, 1) = 1. This implies that one of the IP

addresses may be present in the trace (because at least one IP

address from its subtree is used) while the other one for sure

is not in the trace (as no IP address from its subtree is used).

Therefore, preserving lexicographical-ordering between a and

b is not necessary and the ak+1, bk+1 bits may be flipped.

Next, consider the case usedk+1(a1, . . . , ak, 0) = 1 and

usedk+1(a1, . . . , ak, 1) = 0. This is is similar to the previous

case - only one of the IP addresses can be in the trace.

Therefore, preserving lexicographical-ordering between a and

b is not necessary and the ak+1, bk+1 bits may be flipped.

Finally, consider the case usedk+1(a1, . . . , ak, 0) = 1
and usedk+1(a1, . . . , ak, 1) = 1. This implies that both IP

addresses a and b may be in the trace and hence their

lexicographical-ordering has to be preserved. a′
k+1 = ak+1 ⊕

1∧¬(1∧1) = ak+1⊕0 = ak+1 and b′k+1 = bk+1⊕0 = bk+1. It

follows that a <l b ⇒ ai = bi for i ≤ k and ak+1 < bk+1 ⇒
a′

i = b′i for i ≤ k and a′
k+1 < b′k+1 ⇒ F (a) <l F (b).

IV. SECURITY CONSIDERATIONS

In this section, we examine how feasible it is for an attacker

to recover the original addresses from an anonymized trace.

Since our scheme is prefix-preserving, the limitations and

security weaknesses of Crypto-PAn apply to it as well. In

particular, the prefix-preserving property implies that if an

address is compromised, so is its prefix and hence prefixes

of other addresses will be revealed.

Clearly, the requirement to preserve lexicographical-

ordering poses further limitations on the anonymization. The

more IP addresses are used in the trace, the less bits can be

flipped by the anonymization function. In the extreme case

where the whole address space is used, we cannot anonymize

any IP address. In case a complete subnet is used, it turns

out that we only can anonymize the prefix for that subnet,

but the last part of the IP address (suffix or host part) would

have to remain unchanged. However, if one of the addresses is

revealed, the prefix for the other addresses will be known as

well. Therefore, the origin of the anonymized trace should be

kept secret as its knowledge might allow an attacker to guess

the prefix of addresses in the trace.

It must be noted that the 32-bit IPv4 address space is rather

small and hence there are only a few bits left for anonymiza-

tion in many practical applications. Since the IPv6 address

space is significantly larger, a more robust anonymization of

IPv6 traces can be achieved compared to IPv4 traces. Further-

more, some implementations randomize the host portion of an

(auto-configured) IPv6 address and hence revealing it might

be of much lower value for an attacker.

With respect to SNMP trace anonymization, we have to bear

in mind that Crypto-PAn was evaluated with respect to traces

of application traffic containing IP addresses from various

networks with different prefixes. In the case of SNMP, the IP

addresses to be anonymized would come from the management

traffic and hence might contain different sets of addresses. For

example, attack techniques based on well-known frequently

accessed servers like DNS root servers or frequently visited

web servers might be less feasible.

The number of bits actually flipped also depends on the

choice of the anonymization key. However, choosing the key

in such a way that more bits get flipped does not make the

anonymization more secure. Such an approach only results in

some keys being more probable to be chosen, which in turn

could be exploited by an attacker to find the key much faster.

We can, however, use this idea to define a metric q indicat-

ing how many bits can be flipped. Let q be the fraction of the

number of times when a bit can be flipped over the size of the

address space. In the following, we consider addresses with a

length of n bits. Since the usedi function indicates which bits

can be flipped, we can define q as follows:

q =
number of times¬(usedi(...0) ∧ usedi(...1))

2n
(9)

Theorem 3. The number of times a bit cannot be flipped, i.e.,
the number of times ¬(usedi(...0) ∧ usedi(...1)) = 0 (white
nodes in Figure 2(a)) is the number of distinct addresses in
the trace −1 (in case there is at least one IP address already
in the trace).

Proof. In the case of a trace with just one IP address, we

can obviously flip any bit we want. For a trace with two



/*
* IPv4 address anonymization API.

*/

typedef struct _anon_ipv4 anon_ipv4_t;

anon_ipv4_t* anon_ipv4_new();
void anon_ipv4_set_key(anon_ipv4_t *a, const uint8_t *key);
int anon_ipv4_set_used(anon_ipv4_t *a, in_addr_t ip, int prefixlen);
int anon_ipv4_map_pref(anon_ipv4_t *a, const in_addr_t ip, in_addr_t *aip);
int anon_ipv4_map_pref_lex(anon_ipv4_t *a, const in_addr_t ip, in_addr_t *aip);
void anon_ipv4_delete(anon_ipv4_t *a);

/*
* IPv6 address anonymization API.

*/

typedef struct _anon_ipv6 anon_ipv6_t;
typedef struct in6_addr in6_addr_t;

anon_ipv6_t* anon_ipv6_new();
void anon_ipv6_set_key(anon_ipv6_t *a, const uint8_t *key);
int anon_ipv6_set_used(anon_ipv6_t *a, const in6_addr_t ip, int prefixlen);
int anon_ipv6_map_pref(anon_ipv6_t *a, const in6_addr_t ip, in6_addr_t *aip);
int anon_ipv6_map_pref_lex(anon_ipv6_t *a, const in6_addr_t ip, in6_addr_t *aip);
void anon_ipv6_delete(anon_ipv6_t *a);

Fig. 3. IP address anonymization API provided by libanon. First, an anonymization object (type anon ipv4 t or anon ipv6 t) must
be created. The anon ipv4 map pref() and anon ipv6 map pref() functions implement prefix-preserving anonymization while the functions
anon ipv4 map pref lex() and anon ipv6 map pref lex() implement prefix-preserving and lexicographical-order-preserving anonymization. Note
that these last two functions require that addresses are first marked as used by calling anon ipv4 set used() or anon ipv6 set used().

distinct addresses (sharing a k-bit prefix), only one bit cannot

be flipped. This is the k + 1-th bit.

Assume the claim holds for a trace with n addresses. Then

let a be an IP address not yet in the trace. Let b be an address

from the trace with n addresses such that b has the longest

common prefix with a from all addresses in the trace. Let the

length of this prefix be k. Clearly usedk+1(a1 . . . akbk+1) = 1
as b is in the trace and usedk+1(a1 . . . akak+1) = 0 as a is not

in the trace. ¬(usedk+1(a1 . . . ak0)∧usedk+1(a1 . . . ak1)) =
1 and hence the k-th bit can be flipped.

However, after adding the address a to the trace we get

usedk+1(a1 . . . akak+1) = 1, so ¬(usedk+1(a1 . . . ak0) ∧
usedk+1(a1 . . . ak1)) = 0 and f ′

k(a1 . . . ak) = 0. Hence the

k-th bit can no longer be flipped. By adding a to the trace, we

get a trace with n + 1 distinct addresses and n non-flippable

bits, so the claim holds.

The theorem essentially says that every new address added

to the trace makes one more bit in the tree not flippable. This

allows us to calculate the q metric directly from the number

of distinct IP addresses in the trace:

q =
number of distinct addresses − 1

size of address space

The number of bits that can be flipped only depends on the

number of distinct addresses in the trace rather than on the

prefix-relationships between the addresses.

Finally, it should be noted that the strength of the IP

address anonymization scheme may be reduced in cases where

IP addresses contain other identifiers. Examples are IPv6

addresses containing embedded IEEE 802 MAC addresses,

constructed according to the Modified EUI-64 format [10]. If

it is possible to obtain knowledge about the MAC addresses,

one can exploit that knowledge to restrict the search space

on brute force attacks. In fact, the embedding of other iden-

tifiers into IP addresses effectively binds the anonymization

functions applied to these identifiers and the IPv6 addresses

together. The same applies also in cases where IP addresses

are embedded into other identifiers. Note that this is not an

inherent weakness of the IP address anonymization scheme

presented here but a general problem to consider when one

combines several anonymization functions to data structures

that are not independent.

V. IMPLEMENTATION

The anonymization function described in the previous sec-

tion has been implemented as a C library and a sample pro-

gram that converts IP addresses to anonymized IP addresses.

Both, IPv4 and IPv6 addresses are supported. The anonymiza-

tion part is based on the Crypto-PAn implementation, which

was rewritten in C and extended with the lexicographical-

order-preserving property. Furthermore, the AES implemen-

tation from the OpenSSL project (libcrypto) is used for the

cryptographic functionality.

Internally, the usedi variables are stored in a tree similar to

the original address tree from Figure 2(a). This approach has

rather small computational complexity as adding new nodes

into a binary tree and looking up nodes is very efficient.

The disadvantage is the memory consumption — for an n-

bit address space we need a tree with 2(n+1) − 1 nodes.

Because of the way we have designed the anonymization

scheme, all IP addresses from the trace must be known prior

to starting the anonymization. Two possible ways have been

implemented to determine the IP addresses used in the trace.

One is to scan the whole trace for addresses and create the tree



on the fly. The other one is to let the user define subnets, from

which addresses in the trace come. The latter has the advantage

of creating consistent anonymization on traces from the same

subnet but with slightly different usage of IP addresses. It also

allows for parallel execution on parts of the trace on different

computers. For densely used parts of the address space, this

“approximation” seems to be very efficient.

In order to decrease memory consumption, marking a subnet

as completely used removes all but the top node corresponding

to that subnet in the address tree. However, the current

implementation does not actively check for full subnets in

order to prune the tree. The approach in which the address

tree is built in memory works for IPv4 addresses (tested with

106 randomly generated IP addresses) as well as for IPv6

addresses. However, it does not scale well to IPv6 with respect

to memory complexity as IPv6 addresses are longer and hence

require a deeper tree with more nodes.

The current implementation is capable of anonymizing IPv4

and IPv6 addresses. In addition, transformations for IEEE 802

MAC addresses and 64-bit signed and unsigned integers have

been implemented. These transformations, however, do not

preserve the prefixes and use anonymization methods different

from the IP address anonymization technique described in this

paper. Support for additional data types is planned.

The application programming interface (API) provided by

the C library libanon for anonymizing IPv4 addresses is

shown in Figure 3. To use the library, an IP anonymization

object using anon_ipv4_new() has to be allocated first

and the key set using anon_ipv4_set_key(). Before

addresses can be anonymized, anon_ipv4_set_used()
has to be called for each address or subnetwork

that is used in the trace file. Afterwards, calls to

anon_ipv4_map_pref_lex() can be used to obtain

anonymized addresses. The anonymization object can be

destroyed by calling anon_ipv4_delete(). Similar API

functions are provided for IPv6 addresses and other data

types.

The libanon implementation has been tested on several

traces with randomly generated IP addresses and verified

to preserve lexicographical-ordering. The verification process

was to order the non-anonymized trace file by IP addresses and

then check if the anonymized trace file is still lexicographically

ordered.

Memory consumption and performance have been measured

for various numbers of IPv4 and IPv6 addresses. Memory con-

sumption has been measured by stopping the anonymization

program after the anonymizations are done but before memory

is deallocated. Standard system tools were used to measure

how much memory was used by the stopped program. Besides

that, a counter has been added to keep track of the number of

nodes in the usedi tree. This allows us to calculate how much

memory was requested for the tree with malloc() since the

data structure for a tree node has a size of 16 bytes.

The results are summarized in Tables I and II We clearly

see that for anonymizing IPv6 addresses, much more memory

is needed than for anonymizing IPv4 addresses. We also can

TABLE I

MEMORY FOOTPRINT FOR IPV4 ANONYMIZATION.

number of number measured theoretical
IP addresses of nodes memory footprint memory requests

0 1 3 212 KB 16 B
1 33 3 220 KB 32 B

10 301 3 220 KB 4 KB
100 2 646 3 220 KB 41 KB

1 000 23 182 3 744 KB 362 KB
10 000 199 080 7 836 KB 3 110 KB

100 000 1 656 713 42 024 KB 25 886 KB

TABLE II

MEMORY FOOTPRINT FOR IPV6 ANONYMIZATION.

number of number measured theoretical
IP addresses of nodes memory footprint memory requests

0 1 3 212 KB 16 B
1 129 3 216 KB 2 KB

10 1 248 3 216 KB 19 KB
100 12 143 3 480 KB 189 KB

1 000 118 189 5 860 KB 1 846 KB
10 000 1 147 052 30 012 KB 17 922 KB

100 000 11 080 902 262 860 KB 173 139 KB

see that after adding the memory footprint of the program

on empty input, more memory is allocated than theoretically

requested by malloc(). This discrepancy is caused by the

malloc() behavior. Depending on the size of the trace and

possible marking of subnets as completely used, the memory

consumption might be a problem. In order to decrease the

memory footprint, pruning of the tree for completely used

subnets might be implemented after addition of new nodes.

This could help especially for densely used address spaces.

In addition, a special purpose memory allocator will likely

reduce the malloc() overhead.
Runtime was measured using bash’s builtin time function.

The benchmark measurements were done on a Xeon 3GHz

machine with 1GB of RAM. The results are summarized in

Table III. For the runtime measurements, swap was not used.

However, when we tried to anonymize 106 IPv6 addresses,

swapping was needed and caused the runtime to be incompa-

rably longer. As expected, the runtime for anonymizing IPv6

addresses is longer than anonymizing an equal number of IPv4

addresses.

TABLE III

RUNTIME OF IPV4 AND IPV6 ANONYMIZATION.

number of runtime runtime
IP addresses IPv4 IPv6

1 0.01 s 0.01 s
10 0.01 s 0.01 s

100 0.02 s 0.01 s
1 000 0.03 s 0.14 s

10 000 0.15 s 1.36 s
100 000 1.43 s 13.4 s

Figure 4 visualizes our runtime and memory usage mea-

surements. It can be seen that the runtime is correlated to

the memory allocation overhead, which dominates the perfor-

mance of our current implementation.
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Fig. 4. Measured runtime and memory footprint for IPv4 and IPv6 address anonymization. The runtime is generally acceptable for offline analysis as long
as the binary tree data structure fits into main memory. Memory consumption increases significantly faster for IPv6 addresses.

VI. APPLICATION

Two tools have been implemented in order to analyze SNMP

traffic traces. The first tool snmpdump allows to convert

SNMP messages contained in raw pcap traces [11] into an

XML [12] representation. Fragmented SNMP messages are

reassembled using the libnids library. The XML repre-

sentation serves as an intermediate exchange format and as

the binding interface between operators who contribute traffic

traces and researchers involved in the analysis of these traffic

traces. The details of the schema definition can be found in

[13].

The second tool snmpanon can be used to filter and

anonymize traffic traces. The snmpanon tool reads SNMP

messages from an XML file (or standard input), anonymizes

and filters data and finally writes out a new XML doc-

ument with sensitive information removed or anonymized.

Highly sensitive elements (e.g., SNMP community strings)

can be deleted or replaced with empty content by passing

appropriate filter expressions to snmpanon. These filter ex-

pressions “filter-out” information before anonymization starts

to ensure that filtered information is not implicitly kept in

anonymized traces by influencing how anonymization trans-

formations work.

The remaining sensitive elements can be anonymized by

applying the libanon transformations. A configuration file

defines how many different transformation instances are cre-

ated by snmpanon and the set of variables transformed by

a given transformation instance. The configuration file uses

regular expressions to bind sets of type and object type names

to a transformation instance. This approach allows us to deal

with object types which use various slightly different SMI

types to represent the same information.

IP addresses were originally represented in SNMP MIB

modules using the IpAddress SMI data type [14]. The

InetAddressType and InetAddress textual conven-

tions [15] were introduced in 2000 to handle multiple network

layer addressing formats. The InetAddress serves as a dis-

criminated union for different network layer address formats

which includes besides IPv4 and IPv6 addresses also domain

names. The InetAddressType serves as the discriminator

of the union.

Consistent handling of IPv4 addresses requires some elab-

orate code to identify the discriminator object for a given

InetAddress object and the search may not always suc-

ceed. In such cases, our implementation reverts back to

heuristics to decide whether a given InetAddress value

should be anonymized or not. A trace of all heuristic decisions

is written to the output so that it is possible to verify whether

the heuristics did do the right thing for a given input.

VII. RELATED WORK

Several projects on IP address anonymization and in par-

ticular on prefix-preserving IP address anonymization exist.

One of the first publicly available tools to do prefix-preserving

IP address anonymization was tcpdpriv [16] (using the -A50
option). Unfortunately the anonymization used is susceptible

to an attack described in [17]. Of particular interest is a more

secure tool Crypto-PAn [9], implementing a cryptography-

based scheme described in [7]. This anonymization scheme

is not suffering from tcpdpriv’s weaknesses.

Ruoming Pang and Vern Paxson proposed a high-level pro-

gramming environment for packet trace anonymization [18].

The basic idea is to use simple transformation scripts which

are applied to rewrite portions of a packet trace. The approach

has been applied to anonymize FTP traces. The “filter-in”

principle is applied to produce only output for data that has

been recognized by a transformation script.

David A. Maltz et.al. consider the problem of anonymizing

router configuration data [19]. Their approach is to generally

hash strings that are not keywords while transforming some



important data types (IP addresses, AS numbers, BGP com-

munity attributes) specially to preserve their meaning.

Mario Baldi and Fulvio Risso recently proposed an XML-

based language called Packet Details Markup Language

(PDML) [20] which expresses information related to decoded

packets (namely protocol names, field names and their values).

The PDML format is relatively close to the XML format used

by the tools described in Section VI. The main difference

is that PDML aims to be a generic protocol format while

our XML format is by design SNMP specific and thus a

bit easier to understand and use since element names carry

semantics while PDML element names are generic and ad-

ditional attributes are used to provide the necessary context.

Furthermore, PDML includes features for improved rendering

of information, which is clearly not needed for our purposes.

VIII. CONCLUSION

To improve our understanding of the actual usage of net-

work management protocols, it is necessary to obtain man-

agement traffic traces from operational environments. Traffic

anonymization is one approach to protect sensitive information

contained in such traffic traces. The anonymization of IP

addresses in particular is challenging since IP address prefixes

are relevant for the forwarding semantics. The analysis of

SNMP traces in addition requires that IP addresses appearing

in variable names are lexicographically ordered.

A prefix-preserving and lexicographical-order-preserving IP

address anonymization scheme has been introduced by ex-

tending the prefix-preserving cryptography-based scheme from

Crypto-PAn [7] to preserve lexicographical order. The scheme

has been rigorously proven to be correct. Its limits as well as

security aspects are discussed.

The algorithm has been implemented in the form of a C

library called libanon which is part of the snmpdump
package for analyzing SNMP traffic traces. In its current

implementation the library has a rather large memory footprint.

As future work one could implement pruning of the internally

used tree for completely used subnets or use some more

advanced algorithms, like path compression, to decrease the

memory requirements.

The tool snmpanon uses the libanon anonymization

library to anonymize SNMP traces. Future work will focus

on the collection of SNMP traces from various operational

networks and their subsequent analysis using the tools and

algorithms described in this paper.
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Conventions for Internet Network Addresses,” SyAM Software, Johns
Hopkins University, Wind River Systems, International University Bre-
men, RFC 4001, Feb. 2005.

[16] G. Minshall, “tcpdpriv,” 1996, http://ita.ee.lbl.gov/html/contrib/tcpdpriv.
html.

[17] T. Ylonen, “Thoughts on how to mount an attack on tcpdpriv’s “-A50”
option...” http://ita.ee.lbl.gov/html/contrib/attack50/attack50.html.

[18] R. Pang and V. Paxson, “A High-level Programming Environment for
Packet Trace Anonymization and Transformation,” in Proceedings of
the ACM SIGCOMM 2003 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications. ACM,
2003.

[19] D. A. Maltz, J. Zhan, G. Xie, and H. Zhang, “Structure Preserving
Anonymization of Router Configuration Data,” in Proceedings of the
4th Internet Measurement Conference, Oct. 2004.

[20] M. Baldi and F. Risso, “Using XML for Efficient and Modular Packet
Processing,” in Proceedings of IEEE Globecom 2005, Dec. 2005.


