
 1

Protocol Enhancements for 

Disruption Tolerant Mobile Networking 
 

Simon Schütz, Matus Harvan, Lars Eggert, Stefan Schmid and Marcus Brunner 

 

 

 

Abstract — Internet users are increasingly mobile. Their 

hosts are often only intermittently connected to the Inter-

net, due to the use of different access networks, gaps in 

wireless coverage or explicit user choice. When such hosts 

communicate using the standard Internet protocols, in-

termittent connectivity can significantly decrease perform-

ance and even cause connections to fail altogether. This 

demonstration visualizes the benefits of protocol enhance-

ments that make Internet communication more tolerant to 

network disruptions. These enhancements significantly 

increase performance and avoid connection aborts in the 

presence of intermittent connectivity.
1 

I. INTRODUCTION 

ITHIN the last decade, nomadic networking has become 
common. Users frequently connect to the Internet with 

mobile devices such as notebooks, handhelds or mobile 
phones, using a wide variety of wireless and wired access 

technologies, including cellular networks (GSM, UMTS), 
wired or wireless local area networks, or other broadband 

connections (DSL, cable networks.) In between connected 
periods, these devices frequently experience disconnected 

periods – either voluntarily, e.g., based on user preference, or 
involuntary, e.g., due to bad coverage. This intermittent 

connectivity is a key characteristic of nomadic networking. 
Many Internet protocols, including the Internet Protocol 

(IP) [5] and the Transmission Control Protocol (TCP) [6], do 
not operate well under intermittent connectivity and in the 

presence of host mobility. When they were designed, most 
hosts were stationary and interconnected through permanent, 

wired links. Support for highly mobile hosts that frequently 
switch access technologies was not a design objective.  

The current Internet protocols have three main shortcom-
ings in intermittently connected scenarios. These shortcomings 

can significantly decrease the performance of standard TCP 
connections across intermittently connected paths and can 

even lead to complete connection failures. They are address 
changes, disconnection duration and retransmission behavior. 

This demonstration showcases TCP enhancements that 

mitigate all three limitations and enable efficient operation 
across intermittently connected paths. The improved TCP does 

not abort connections during disconnected periods and effi-
ciently transmits data during any connected periods. The 

proposed solution combines two new TCP extensions, the 
TCP User Timeout Option [3] and the TCP Immediate Re-

transmission [2], with the Host Identity Protocol (HIP) [7]. 
See Section III for details of the solution. 

 
Manuscript received February 23, 2006. Simon Schütz, Matus Harvan, Lars 
Eggert, Stefan Schmid and Marcus Brunner are with NEC Europe Ltd, 
Network Laboratories, Heidelberg, Germany (e-mail: {schuetz | eggert | 
schmid | brunner}@netlab.nec.de, m.harvan@iu-bremen.de). 

II. DEMONSTRATION DESCRIPTION 

Figure 1 illustrates the demonstration scenario, in which a 
mobile user who travels by train is streaming live video to a 

host in the Internet. The mobile user connects to the Internet 

through several different wireless base stations that are set up 
along the train track. The base stations do not fully cover the 

route of the train track; the user therefore experiences con-
nected periods that alternate with disconnected periods. 

To visualize the performance benefits of the TCP enhance-
ments, the mobile host simultaneously streams the same live 

video to a peer host twice, once using standard TCP and once 
using the enhanced TCP. The peer host displays the two 

received video streams side-by-side, allowing a direct, visual 
comparison of the performance differences. The enhanced 

TCP connection is protected from aborts caused by prolonged 
connectivity disruptions and the video stream it carries restarts 

more quickly after a connectivity disruption, compared to 
standard TCP. The enhanced TCP is also able to utilize short 

periods of connectivity for transmissions, whereas standard 
TCP may fail to transmit data during such short connectivity 

periods. 

 
Figure 1. Illustration of the demonstrated scenario. 

The demonstration realizes this scenario through use of a 

Lego train that carries a camera-equipped laptop around a train 
track, shown in the photograph in Figure 2. A stationary PC 

provides two different wireless access networks to the mobile 
user; only one is active at a given time and the PC periodically 

disrupts connectivity when disabling one access network 
before enabling the second one. 

Please note that TCP is obviously not an ideal transport 
protocol for live video in a production system. For this dem-

onstration, however, using TCP to carry video enables direct, 
visual comparison of the performance increases, allowing the 

spectators to develop an intuitive feel for the achievable 
improvements. 

W



 2

 
Figure 2. The Lego train and track, and the mobile, camera-equipped 
host used in the demonstration. 

III. TECHNICAL DETAILS 

This section describes the details of the demonstrated TCP 

enhancements for disruption tolerance. The improved protocol 
closely approximates the ideal transmission behavior in the 

presence of intermittent connectivity illustrated in Figure 3. 
The enhanced TCP utilizes available periods of connectivity 

almost fully for transmission (from t0 to t1 and after t2) and 
does not abort the connection during the disconnected period 

between t1 and t2. The proposed solution combines two new 
TCP extensions, the TCP User Timeout Option [3] and the 

TCP Retransmission Trigger [2], with the Host Identity 
Protocol (HIP) [7].  

se
qu

en
ce

 n
um

be
r

time

disconnection reconnection

disconnected period

t0 t1 t2  
Figure 3. Illustration of enhanced TCP behavior under intermittent 
connectivity. 

A. Disconnection Duration 
TCP defines a user timeout that specifies the maximum 

time that data may remain unacknowledged by the peer. The 
intent behind the user timeout is to periodically reclaim system 

resources allocated to stale connections, where the peer has 
gone away. Typically, TCP implementations use a system-

wide user timeout of a few minutes [10]. Peers do not need to 
use the same user timeout. After one peer has aborted its half 

of a connection, a communication attempt by the other peer 
will result in a reset, as shown in Figure 4. Note that the user 

timeout is different from the socket timeout provided by 
socket API. The socket timeout defines how long a send or 

receive call to the socket waits until data can be written to the 
send buffer or read from the receive buffer, whereas the user 

timeout applies to data already sent to the receiver but remains 
in the output buffer until it is acknowledged. 

During a disconnection, no acknowledgments from peers 
can reach a node. To TCP, this appears as if the connections 

have gone stale. It will consequently abort them to reclaim 

associated system resources when the user timeout expires. 
Connection aborts are error conditions for applications and 

can cause undesirable effects. 

se
qu

en
ce

 n
um

be
r

time

x

disconnection user
timeout

reconnection

disconnected period

user timeout = connection abort

t0 t1 t2 t3  
Figure 4. Illustration of standard TCP timeout behavior under 
intermittent connectivity. 

The TCP User Timeout Option [3] allows conforming hosts 
to exchange per-connection abort timeout requests. This 

allows mobile hosts to maintain TCP connections across 
disconnected periods that are longer than their system’s 

default user timeout. A second use of the TCP User Timeout 
Option is exchange of shorter-than-default user timeouts. This 

can allow busy servers to explicitly notify their clients that 
they will maintain the state associated with established con-

nections only across short periods of disconnection. 
TCP User Timeout Options allow hosts to both request spe-

cific user timeouts for new connections and to request changes 
to the effective user timeouts of established connections. The 

latter allows connections to start with short timeouts and only 
request longer timeouts when external information suggests 

that disconnection was imminent, and only for connections 
considered important. The ability to request changes to user 

timeouts of established connections is also useful to raise the 
user timeout after in-band authentication has occurred. For 

example, peers could request longer user timeouts for the TCP 
connections underlying two-way authenticated TLS connec-

tions after their authentication handshakes. 

B. Retransmission Behavior 
When a disconnection occurs along the path between a host 

and its peer while the host is transmitting data, it stops to 

receive acknowledgments. After the retransmission timeout 
(RTO) expires, the host attempts to retransmit the first unac-

knowledged segment. TCP’s recommended RTO management 
procedure [11] doubles the RTO after each failed retransmis-

sion attempt until the RTO exceeds 60 seconds. 
This retransmission behavior, shown in Figure 5, is ineffi-

cient in the presence of intermittent connectivity. When a 
disconnection ends, many TCP implementations still wait until 

the RTO expires before attempting retransmission. Depending 
on when connectivity becomes available again relative to the 

next scheduled RTO, this behavior can waste up to a minute of 
connection time for TCP implementations that follow the 

recommended RTO management and even more for others. 
The TCP Immediate Retransmission [2], the second com-

ponent of the enhanced TCP, augments the standard retrans-
mission scheme. It uses connectivity indicators, which trigger 

immediate retransmissions and depend on the specifics of a 
node and its environment, such as the link-layer technologies 

it attaches to or the presence of network-layer mechanisms 
such as DHCP, MobileIP or HIP. The IETF’s Detection of 



 3

Network Attachment (DNA) working group currently investi-

gates the specifics of providing such indicators (triggers). 
Connectivity indicators are generally asymmetric, i.e., one 

may occur on one peer host but not the other. A local event at 
one host may signal the retransmission trigger, while the other 

host is unable to detect this event across the network. Symmet-
ric connectivity indicators are a special case and always occur 

concurrently at both communicating hosts. They are usually 
based on handshake events such as IKE exchanges or HIP 

readdressing. Symmetric connectivity indicators are an impor-
tant special case, because the TCP retransmission procedure 

required in response to a symmetric connectivity indicator is 
simpler than that for an asymmetric one. The next section will 

describe this in detail. 

se
qu

en
ce

 n
um

be
r

time

unused
connection

time

disconnection reconnection next RTO

disconnected period

t0 t1 t2 t3  
Figure 5. Illustration of standard TCP retransmission behavior under 
intermittent connectivity 

When receiving a symmetric or asymmetric connectivity 
indicator, conforming TCP implementations immediately 

initiate the standard retransmission procedure, as if the RTO 
had just expired. If the connectivity indicator is symmetric, 

i.e., both peers receive it simultaneously; this simple change is 
sufficient to kick-start a TCP connection. 

If the connectivity indicator is asymmetric, a simple re-
transmission by one peer is not sufficient. Asymmetric con-

nectivity indicators only occur at one peer but not the other. If 
the host receiving the trigger has no (or too little) unacknow-

ledged data awaiting retransmission, it will not emit enough 
segments to cause the peer node, which may have unacknow-

ledged data, to attempt a retransmission itself. The retransmis-
sion trigger would thus only function in one direction, which 

is ineffective for asymmetric communication. To avoid this 

issue, conforming TCP implementation thus perform a differ-
ent retransmission procedure in response to an asymmetric 

connectivity indicator.  

C. Mobility Management 
Finally, switching between access networks – due to physi-

cal mobility or not – usually also changes a host’s topological 
location in the network. Because it is no longer reachable at its 

old address, a host must start to use a different IP address that 
identifies its new network attachment point. 

Many Internet transport protocols, including TCP, use IP 
addresses (often together with other identifiers such as port 

and protocol numbers) to uniquely and permanently identify 
the endpoints of transport-layer connections during their 

lifetime. When a host changes its IP address, the local end-
points of its established TCP connections thus change as well. 

Whereas some newer transport protocols such as SCTP [8] 
support changing the endpoints of established connections and 

can continue to operate across IP address changes, TCP does 
not. Consequently, TCP implementations must abort estab-

lished connections when IP addresses change. This error 

condition, illustrated in Figure 6, is visible to applications and 
may cause them in turn to abort or behave undesirably.  

x

se
qu

en
ce

 n
um

be
r

time

IP address change =
connection abort

disconnection reconnection

disconnected period

t0 t1 t2  
Figure 6. Illustration of TCP behavior in the presence of IP address 
changes. 

The Host Identity Protocol (HIP) [7] and its mobility and 

multi-homing extensions [9] provide the necessary mobility 
support for hosts that roam across different access networks. 

The HIP layer, a new shim layer between the network and 
transport layers, enables host mobility that is transparent to 

applications and services. Mobility support for established 
connections is provided end-to-end. Each host informs its 

current peers using a three-way handshake when IP address 
changes occur. Note that this three-way handshake can serve 

as a symmetric connectivity indicator for the TCP Immediate 
Retransmission. 

ACKNOWLEDGMENT 

This demo is partly a product of Ambient Networks, a re-

search project supported by the European Commission under 

its Sixth Framework Program. The views and conclusions 
contained herein are those of the authors and should not be 

interpreted as necessarily representing the official policies or 
endorsements, either expressed or implied, of the Ambient 

Networks project or the European Commission. 

REFERENCES 

[1] Simon Schütz, Lars Eggert, Stefan Schmid and Marcus Brunner. 
Protocol Enhancements for Intermittently Connected Hosts. ACM Com-
puter Communication Review (CCR), Vol. 35, No. 3, July 2005, pp. 5-
18. 

[2] Lars Eggert, Simon Schütz and Stefan Schmid. TCP Extensions for 
Immediate Retransmissions. Internet Draft draft-eggert-tcpm-tcp-
retransmit-now-02, Work in Progress, June 2005. 

[3] Lars Eggert and Fernando Gont. TCP User Timeout Option. Internet 
Draft draft-ietf-tcpm-tcp-uto-02, Work in Progress, October 2005. 

[4] Simon Schütz. Network Support for Intermittently Connected Mobile 
Nodes. Diploma Thesis, University of Mannheim, Germany, June 2004. 

[5] Jon Postel. Internet Protocol. STD 5, RFC 791, September 1981. 
[6] Jon Postel. Transmission Control Protocol. STD 7, RFC 793, September 

1981. 
[7] Robert Moskowitz and Pekka Nikander. Host Identity Protocol Architec-

ture. Internet Draft draft-ietf-hip-arch-03, Work in Progress, August 
2005. 

[8] Randall R. Stewart, Qiaobing Xie, Ken Morneault, Chip Sharp, Hanns 

Juergen Schwarzbauer, Tom Taylor, Ian Rytina, Malleswar Kalla, Lixia 
Zhang and Vern Paxson. Stream Control Transmission Protocol, RFC 
2960, October 2000. 

[9] Pekka Nikander, Jari Arkko and Tom Henderson. End-Host Mobility 
and Multi-Homing with Host Identity Protocol. Internet Draft draft-ietf-

hip-mm-01, Work in Progress, February 2005. 
[10] W. Richard Stevens. TCP/IP Illustrated, Volume 1: The Protocols. 

Addison-Wesley, 1994. 
[11] Vern Paxson and Mark Allman. Computing TCP’s Retransmission 

Timer. RFC 2988, November 2000. 


