
A 6lowpan Implementation for TinyOS 2.0

Matúš Harvan
Computer Science

Jacobs University Bremen
Campus Ring 1

28759 Bremen, Germany
m.harvan@jacobs-university.de

Jürgen Schönwälder
Computer Science

Jacobs University Bremen
Campus Ring 1

28759 Bremen, Germany
j.schoenwaelder@jacobs-university.de

1. INTRODUCTION
Traditionally, wireless sensor networks have used custom,
light-weight network protocols such as Active Messages. How-
ever, given the common presence of an 802.15.4 radio inter-
face [4] on the motes and the 6lowpan adaptation layer [6]
allowing the exchange of IPv6 packets over 802.15.4 links,
enabling IPv6 connectivity in wireless sensor networks and
connecting them to the global Internet becomes feasible. By
natively supporting the IPv6 protocol, these devices would
become first-class Internet citizens capable of communica-
tion with any other IPv6-enabled host and benefit from
the standardized and already estabilished technology and
a plethora of readily available applications. To this end a
6lowpan/IPv6 stack [3] has been implemented for TinyOS
2.0 [2], an embedded operating system commonly used in
wireless sensor networks.

The rest of this document is structured as follows. The
6lowpan adaptation layer is briefly introduced in Section 2,
the implementation is discussed in Section 3, related work
is described in Section 4 and the document concludes in
Section 5.

2. 6LOWPAN
The 6lowpan adaptation layer allows to transport IPv6 pack-
ets over 802.15.4 links. To meet the IPv6-required MTU of
at least 1280 bytes with the 802.15.4 layer offering at most
102 bytes of payload per frame, a fragmentation mechanism
below the IP layer is specified using an optional Fragmenta-
tion Header before the actual IPv6 header. Support for mesh
networking is provided by the optional Mesh Addressing and
Broadcast Headers. The former carries the Originator and
Final Destination link-layer addresses while the latter con-
tains a sequence number used to detect duplicated frames.
Both are carried at the beginning of the 802.15.4 payload.
Furthermore, mechanisms for compressing the IPv6 header
from 40 down to 2 bytes and the UDP header from 8 down
to 4 bytes, in the ideal case, are specified. To distinguish
between a compressed and uncompressed header, a 1-byte
dispatch value is prepended before the header. The optional
6lowpan headers mentioned earlier also start with a dispatch
value allowing the recipient to determine what types of head-
ers are present. The format of the 6lowpan adaptation layer
is specified in [6].

3. IMPLEMENTATION
The goal for the implementation was to support replying
to an ICMP echo request message (ping) and exchanging
of UDP datagrams. Only the bare minimum necessary for
meeting that goal was implemented.

The main restriction of the implementation was the amount
of RAM available on the target platform, i.e., 4 KB on the
MicaZ. Although aiming for an embedded implementation,
easily readable and maintainable code was preferred over op-
timizing to squeeze into the least possible amount of memory
at the cost of hard to understand programming constructs,
hacks or munging of code into a few large functions for sav-
ing space on the stack. Each network layer and protocol are
handled by a separate function. This allows to easily add
more functionality in the future.

3.1 6lowpan for Linux
Most PCs today do not have an 802.15.4 interface and com-
mon operating systems such as Linux or the BSDs do not
include a 6lowpan implementation. To allow for exchang-
ing packets between the motes and a Linux PC, a tunneling
daemon has been developed to use a mote as an 802.15.4
interface. The scenario is shown in Figure 1.

The mote runs the TinyOS sample application BaseSta-
tionCC2420 forwarding traffic between the 802.15.4 and the
USB interface of a mote. This mote is connected to the PC
via the USB interface.

The translating daemon on the PC is a C program exchang-
ing packets between the USB interface and a tun interface.
The latter is a virtual network interface allowing a user
space process to read and write packets to it. The dae-
mon decapsulates the 6lowpan-encapsulated IPv6 packets
received from the mote and 6lowpan-encapsulates the plain
IPv6 packets received on the tun interface. This allows to
use standard IPv6 applications on Linux for communica-
tion with the motes without modifying the Linux kernel.
Furthermore, by enabling IPv6 forwarding on the PC, the
motes can be connected to the global Internet.

3.2 Evaluation
The implementation was tested using a scenario as shown in
Figure 1. A TelosB mote with the BaseStationCC2420 appli-
cation was connected to a Linux PC running the translating
daemon. Two other TelosB motes and a MicaZ mote were
flashed with the 6lowpan implementation. The motes were



serial_tunnel
daemon

tun(4)
interface

linux/BSD
IP stack

serial
interface

mote running
BaseStationCC2420

serial
interface

802.15.4
interface

802.15.4
interface

mote with
a IPv6/6lowpan stack

USB

IPv6 packets
802.15.4

PC

6lowpan-encapsulated
IPv6 packets

(SLIP)

6lowpan-encapsulated
IPv6 packets

IPv6 packets

Internet

IPv6 packets

Figure 1: The motes and the Internet

successfully replying to ICMP echo requests initiated from
the PC as well as exchanging UDP datagrams. Both short
unfragmented packets as well as large, fragmented packets
of size up to 1280 bytes were successfully exchanged.

The main limitation to interoperability with other 6low-
pan implementations is the absence of a proper 802.15.4
stack in TinyOS 2.0. Although the implementation sup-
ports the ICMP echo mechanism and the UDP protocol,
many features required for IPv6 implementations are miss-
ing. Among others, the Neighbor Discovery has not been
implemented and packets are broadcasted on the link-layer,
IPv6 extensions headers are not processed, IPv6 fragmen-
tation is not supported and ICMP error messages are not
generated. While many of these could be added, it is un-
clear whether they make sense in an embedded system. For
example, is one willing to trade decreased battery life for
regular neighbor advertisements or neighbor unreachability
detection? Or if an error is encountered while processing a
received packet, should a 1280 bytes long ICMP error mes-
sage be sent back? Should one be sent back at all?

4. RELATED WORK
Several 6lowpan implementations for wireless sensor net-
works have been announced while this project was in progress.

The Arch Rock company has announced a commercial 6low-
pan implementation Primer Pack/IP in March 2007. As
this is a commercial implementation, technical information
is scarce.

The Sensinode company has released a GPL-licensed 6low-
pan implementation called NanoStack v0.9.4 in April 2007.
It is claimed to be up to date with version 12 of the 6low-
pan format draft and to include IEEE 802.15.4 Beacon-mode
support. The source code, however, does not seem to include
6lowpan fragmentation support and UDP checksumming.

uIP[1] is a TCP/IPv4 stack written by Adam Dunkels. It
runs on 8-bit controllers with a few hundred bytes of RAM.
It has been ported to TinyOS 1.1 by Andrew Christian
from the Hewlett-Packard Company. It is available in the
tinyos-1.x/contrib/handhelds/tos/lib/UIP/ directory of
the TinyOS 1.1 distribution.

While an IP stack can be implemented on the motes, it
is also possible to use a proxy-based scheme. In this case
a special proxy server is employed as a gateway separating
the sensor network and the IP network. This allows to freely
choose the communication protocol used within the sensor
network. Although limited to IPv4, the Sensor Internet Pro-
tocol (SIP) [5] is an example of such a proxy scheme.

5. CONCLUSION
A 6lowpan/IPv6 stack has been implemented for the TinyOS
2.0 operating system and was tested on the TelosB and Mi-
caZ hardware platforms. Using the translating daemon on
the PC and a mote as the base station, it is possible to ex-
change IPv6 packets between the motes and a PC without
an 802.15.4 interface. In case IP forwarding is set up on
the PC and a properly assigned and routable global IPv6
prefix is used, the motes can be connected to the global In-
ternet. More information about the implementation can be
found in [3] and it can be downloaded from [7]. Further-
more, discussions have started to include it in the TinyOS
distribution.

As future work it would be useful to add a proper 802.15.4
stack. Instead of broadcasting on the link-layer, Neighbor
Discovery could be implemented. Various mesh routing al-
gorithms could be investigated and the Mesh Addressing
and Broadcast Headers could be used for mesh networking.
Finally, SNMP could be implemented on top of the 6lowpan
stack for collecting sensor values.

6. REFERENCES
[1] A. Dunkels. Full TCP/IP for 8-bit architectures. In

Proceedings of The First International Conference on
Mobile Systems, Applications, and Services (MOBISYS
‘03), May 2003.

[2] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler. The nesC Language: A Holistic
Approach to Networked Embedded Systems. In
PLDI03. ACM, June 2003.

[3] M. Harvan. Connecting Wireless Sensor Networks to
the Internet - a 6lowpan Implementation for TinyOS
2.0. Master’s thesis, School of Engineering and Science,
Jacobs University Bremen, May 2007.

[4] IEEE. IEEE Std. 802.15.4-2003, Oct. 2003.

[5] X. Luo, K. Zheng, Y. Pan, and Z. Wu. A TCP/IP
implementation for wireless sensor networks. In IEEE
International Conference on Systems, Man, and
Cybernetics, 2004.

[6] G. Montenegro, N. Kushalnagar, D. E. Culler, and
J. W. Hui. Transmission of IPv6 Packets over IEEE
802.15.4 Networks. Internet-Draft Version 13, IETF,
April 2007. Work in progress.

[7] http://www.eecs.iu-bremen.de/users/harvan/

files/6lowpan.tar.gz.


