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Abstract

It is a growing concern of companies and end users whether IT systems comply with security
policies, which, for example, stipulate how sensitive data must and must not be used. In this
thesis, we present a scalable solution for compliance checking of distributed and concurrent
systems. Our solution is based on runtime monitoring, where policies are specified in an
expressive temporal logic and system actions are logged.

While well-established methods for monitoring linearly-ordered system behavior exist, a
major challenge is monitoring distributed and concurrent systems, where actions are locally
observed in the different system parts. The observed actions can only be partially ordered
while policy compliance may depend on the actions’ actual order of appearance. In general, it
is intractable to check compliance of partially ordered logs. To overcome the intractability, we
identify fragments of our policy specification language for which compliance can be checked
efficiently, namely, by monitoring a single representative log in which the observed actions
are totally ordered.

Furthermore, to scale our approach to large logs, we parallelize the process of monitoring
the logged actions. To this end, we provide a theoretical framework for slicing logs, that is, the
reorganization of the logged actions into smaller log parts that can be analyzed independently
of each other. Within this framework, we present orthogonal methods for generating such
slices and provide means to combine these methods.

With two case studies we show that our fragments are capable of expressing non-trivial
policies and that monitoring representative logs is feasible on real-world data. We utilize the
MapReduce framework to implement our log slicing solution and demonstrate its feasibility
and scalability by successfully monitoring large-scale logs in one of our case studies.
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Zusammenfassung

Für Unternehmen sowie für Endbenutzer ist es immer wichtiger, dass in IT-Systemen diverse
Sicherheitsregeln eingehalten werden. Diese Regeln legen zum Beispiel fest wie sensible
Daten behandelt werden müssen. In dieser Dissertation stellen wir eine skalierbare Lösung
vor, um verteilte und nebenläufige Systeme auf die Einhaltung solcher Regeln zu überprüfen.
Diese Lösung stützt sich auf eine Überwachung der Systeme, bei der die Regeln in einer
temporalen Logik spezifiziert werden und relevante Systemaktionen geloggt werden.

Methoden zur Überprüfung von Logs, in denen die beobachteten Systemaktionen linear
geordnet sind, existieren bereits. Es ist allerdings unklar, wie man verteilte und nebenläufige
Systeme überprüft, in denen die Systemaktionen in verschiedenen Teilen des Systems lokal
beobachtet und geloggt werden. In solchen Fällen können die beobachteten Systemaktio-
nen nur partiell geordnet werden. Die Einhaltung mancher Regeln hängt jedoch von der
tatsächlichen Reihenfolge der Aktionen ab. Es ist im Allgemeinen nicht effizient lösbar,
partiell geordnete Logs auf Regelverletzungen zu überprüfen, weil es exponentiell viele
Linearizierungen geben kann. Daher identifizieren wir Fragmente unserer Regelspezifika-
tionssprache, für die wir die Einhaltung der Regeln effizient überprüfen können. Für Regeln
aus diesen Fragmenten reicht es nämlich aus, nur einen einzelnen, total-geordneten Log zu
betrachten.

Um grosse Logs überprüfen zu können, parallelisieren wir unseren Überprüfungsansatz.
Dafür entwickeln wir Verfahren für die Aufteilung von Logs in kleinere Teile, so dass
diese unabhängig voneinander betrachtet und überprüft werden können. Diese Verfahren
beinhalten verschiedene Aufteilungsmethoden und erlauben es, diese Methoden miteinander
zu kombinieren.

Durch zwei Fallstudien belegen wir, dass nicht-triviale, in der Praxis vorkommende, Regeln
in den beschriebenen Fragmenten ausgedrückt werden können und dass Logs aus realen
Systemen überprüft werden können. Wir implementieren die Aufteilung von Logs mittels
MapReduce und zeigen die praktische Einsetzbarkeit und die Skalierbarkeit unserer Lösung
durch erfolgreiche Überprüfung von sehr grossen Logs in einer unserer Fallstudien.
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1 Introduction

Both public and private companies are increasingly required to check whether the agents of
their IT systems, that is, users and processes, comply with security policies. These policies,
for example, specify permissive and obligatory actions for agents and stipulate the usage of
sensitive data. For example, US hospitals must follow the US Health Insurance Portability and
Accountability Act (HIPAA) [HIP96] and financial services must conform to the Sarbanes-
Oxley Act (SOX) [SOX02]. For end users, it is also a growing concern whether their private
data collected by and shared within IT systems is used only in the intended way.

A prominent approach to checking system compliance is based on monitoring the actions
of the users and processes. Either the actions are checked online by a monitor, which reports
violations when an action does not comply with a policy, or the observed actions are logged
and a monitor checks the logs offline at a later time, such as during an audit.

Problem Statement. Although various monitoring approaches have been developed for
different policy specification languages, see, for example, [RGL01, DJLS08, HV12, GJD11,
BKMP08], they fall short for checking compliance of concurrently logged actions and do not
scale to large logs. In the following, we explain the reasons for these short-comings in more
detail.

The underlying semantic model of these languages is that the observed system actions are
totally ordered. However, a total ordering is often not available. Even simple IT systems
are composed of multiple interacting subsystems, which typically are distributed and act
concurrently. Hence system actions can only be observed locally and independently in each
subsystem. Although we might have a total ordering on the actions observed in each individual
subsystem, it is unclear how to combine them with actions observed in other subsystems. And
policy compliance may depend on how all observed actions are totally ordered.

Synchronization of all subsystems for each observed system action leads to a total ordering,
but this is usually prohibitively expensive. Not requiring it leads to a partial order on the
observed actions. Determining whether at least one or whether all possible extensions of
such a partial order into a total order violate a policy is in general an intractable problem.
Intuitively, this is because a partial ordering on a finite set has, in the worst case, exponentially
many different extensions to a total ordering.

Another shortcoming stems from the fact that the approaches described in [RGL01,DJLS08,
HV12, GJD11, BKMP08] also fall short for checking compliance of larger IT systems like
cloud-based services and systems that process machine-generated data. Due to a lack of
parallelization, the monitors in these approaches do not cope with the enormous amount of
logged system actions: these systems can easily log terabytes of actions each day.

Solution. In this dissertation, we present a solution for monitoring distributed and concurrent
systems that scales to large logs. In particular, we identify policies for which compliance can
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1 Introduction

Figure 1.1: System Extensions

be checked efficiently by inspecting a single representative sequence in which the observed
system actions are totally ordered. In a case study with Nokia, we deploy and evaluate
this solution in a real-world concurrent and distributed IT system. Furthermore, to scale the
compliance checking process to large logs, we provide techniques to parallelize the monitoring
of logs and we evaluate their scalability in a large-scale case study with Google.

Monitoring Setup. To explain our approach in more detail, we describe our monitoring
setup. Given a system, we extend it to observe system actions. We log the actions locally
in the different subsystems and annotate each action with a timestamp. We assume that the
clocks used for timestamping are synchronized [TvS02] and of limited precision (timestamps
come from a non-dense set). Hence even with clock synchronization, the timestamps lead only
to a partial ordering since actions can be logged in different subsystems with equal timestamps.
We pre-process the local logs, merge them, and monitor this merged stream of logged actions.
These system extensions are depicted in Figure 1.1.

To express policies, we use a metric first-order temporal logic (MFOTL). In general,
temporal logics [Pnu77] are well suited to formalize system properties and to algorithmically
reason about system behavior. In particular, the standard temporal operators allow us to
naturally express temporal aspects of data usage policies, such as whenever a user requests the
deletion of his data then the data must eventually be deleted. Metric temporal logics [AH91]
associate timing constraints with temporal operators. We can thereby straightforwardly express
requirements that commonly occur in data usage policies, for example that data deletion must
happen within 30 days. A first-order logic allows us to formulate dependencies between the
finite but unbounded number of agents and data elements in IT systems.

Basin et al. [BKMP08] presented a monitoring algorithm for an expressive fragment
of MFOTL for a totally ordered sequence of timestamped actions and in [BHKZ12] we
described an implementation of this algorithm. Basin et al. [BKM10] also showed that many
security policies can naturally be expressed in an MFOTL fragment, which can be effectively
monitored.

Monitoring Data Usage Policies. For monitoring security policies in general, we consider
systems that consist of multiple subsystems. For monitoring data usage policies in particular,
we consider a more restricted system model. The types of entities in this system are data,
(data) stores, agents, and actions. Data is stored in distributed data stores such as databases
and repositories and created, read, modified, combined, propagated, and deleted by actions
initiated by agents. Agents are humans, applications, and processes, including database
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triggers. The agents do not necessarily comply with policies.
We assume that agents always access data directly from a store and never indirectly from

another agent. Whenever an agent wants to use some data, it accesses the appropriate store,
uses the data, and discards it afterwards. For subsequent usage, it must access the store
again. Before discarding the data, the agent may write it, possibly after processing it in some
way, into the same or a different store. In this way, data can propagate between stores. A
consequence of this restriction on the interaction between system entities is that the use of
data is always observable at the data stores and can be logged there locally.

Monitoring Concurrently Logged Actions. An overview of our solution to monitor con-
currently logged actions is as follows: We identify two fragments of MFOTL that describe
policies insensitive to the ordering of actions labeled with equal timestamps. For policies
expressed in these fragments, it suffices to monitor a single stream of logged actions. For the
first fragment, an arbitrary interleaving can be monitored. For the second fragment, it suffices
to monitor the collapse of an interleaving, where actions logged with equal timestamps are
assumed to have happened simultaneously. Both an interleaving and a collapse can be easily
obtained by merging the logs produced by the subsystems.

The first fragment subsumes the second one in terms of expressiveness. However, system
monitoring with respect to formulas in the second fragment is more efficient. Both fragments
are defined by labeling a formula’s atomic formulas and using rules to propagate the labels
to the formula’s root. The labels describe semantic properties about the insensitivity of the
labeled subformula to the ordering of actions with equal timestamps. Furthermore, we provide
means to approximate policies to fall within these fragments.

We evaluate our approach in a real-world case study, Nokia’s Data-collection Cam-
paign [AN10, KBD+10, LGPA+12]. In this campaign, sensitive data is collected by mobile
phones and propagated between databases. The underlying IT system is an instance of our
system model for monitoring data usage policies. For the evaluation, we extended it to support
logging and monitoring as indicated in Figure 1.1.

Monitoring Large Logs. An overview of our solution to scale the monitoring process to
large logs is as follows: For a given policy, we reorganize the logged actions into small parts,
called slices. We show that each slice can be meaningfully monitored independently of the
other slices. This allows us to parallelize and distribute the monitoring process over multiple
computers.

In general, it is not obvious how to reorganize the logged actions into slices such that the
slices can be analyzed independently. The slices must be sound and complete for the given
policy and the logged data, that is, when monitoring these slices only valid violations are
reported and every violation is reported by at least one of the monitors. We lay the foundations
for obtaining slices with these properties. In particular, we provide a theoretical slicing
framework, where logs are represented as temporal structures and policies are specified as
formulas in MFOTL.

We present two basic orthogonal methods to generate sound and complete slices. With
the first method, a slice is used to check system compliance during a specified period of
time, for example, a particular week. Based on the timestamps that record when an action is
performed, the slicing method ensures that a slice contains those actions that are needed to
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1 Introduction

check compliance of the system during the specified period of time. Note that not only the
actions from the specified period of time are relevant since the policy might refer to actions
that must have or must not have happened at previous or later time points. With the second
method, a slice is used to check system compliance for specific entities, such as all users
whose login names start with the letter “A.” Again, note that actions of other users might
also be relevant to determining whether a particular user is compliant. The slicing method
uses the data parameters of the logged actions to ensure that a slice contains all those actions
that are needed to check system compliance for the specific entities. In addition to these two
basic slicing methods, we describe filtering methods, which can also be understood as slicing
methods. Filtering discards irrelevant parts of a slice to speed up the monitoring process.
Furthermore, we show that our slicing and filtering methods are compositional. This allows
us to split a log into slices with respect to the different dimensions of time and data.

We implement our monitoring approach using the MapReduce framework [DG04]. MapRe-
duce allows us to efficiently reorganize large logs into slices and monitor these slices in
parallel. In general, MapReduce computations comprise a map phase, followed by a reduce
phase. In the map phase, one applies multiple instances of a map function and in the reduce
phase, one applies multiple instances of a reduce function. Each of these instances accesses
only a portion of the data set, which is exploited by the MapReduce framework to run these
instances in parallel on multiple computers. In our monitoring solution, we identify in the
map phase, for each slice, in parallel the relevant actions for the given policy. The identified
actions for a slice are then collected by the MapReduce framework, which generates the slice
and passes it to an instance of our reduce function. The slices are then monitored, again in
parallel, in the reduce phase.

Finally, we evaluate our monitoring solution in a large real-world case study with Google,
where we check more than 35,000 computers for compliance. The policies considered concern
the processes of updating system configurations and the access to sensitive resources. We
successfully monitor the logs of these computers, which consist of several billion log entries
from a two year period. This shows the scalability of our approach.

Contributions. We summarize our contributions as follows. We provide a solution for effi-
ciently monitoring partially ordered logs, which is a central problem in monitoring concurrent
distributed systems. Furthermore, we lay the foundations for splitting logs into slices for mon-
itoring and provide a scalable algorithmic realization for monitoring large logs in an offline
setting. Both our foundations and our algorithmic realization account for compositionality of
slicing methods. Moreover, we demonstrate the feasibility, effectiveness, and scalability of our
solutions on two real-world applications. In particular, the two identified MFOTL fragments
are sufficiently expressive to capture real-world policies, the monitor can efficiently check
such policies on real-world logs, and our slicing approach scales the monitoring process to
terabytes of logged actions.

Although we focus here on MFOTL as the policy specification language and represent logs
as temporal structures, the underlying principles of our slicing framework and monitoring a
single representative trace to check compliance of an IT system are general and apply to other
policy specification languages and representations of logs.
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Organization. The remainder of this thesis is structured as follows. In Chapter 2, we provide
background on MFOTL and the monitor. In Chapter 3, we present the theory underpinning
the monitoring of concurrently logged actions. Namely, we prove that monitoring a partially
ordered set of actions is in general intractable, define fragments of formulas for which this
problem can be solved efficiently, compare these fragments, and explain how a policy can be
approximated by one that can be monitored efficiently. In Chapter 4, we report on the Nokia
case study. In Chapter 5, we present the theory that allows us to split logs into slices and
monitor the slices in parallel. In particular, we lay the foundations for generating sound and
complete slices and we present slicing and filtering methods based on data parameters and
timestamps. In Chapter 6, we describe the Google case study and the experimental evaluation
of monitoring log slices. In Chapter 7, we discuss related work and in Chapter 8, we draw
conclusions.

The work described in Chapters 3 and 4 was done in collaboration with David Basin, Felix
Klaedtke, and Eugen Zălinescu. Portions of the research used the MDC Database made
available by Idiap Research Institute, Switzerland and owned by Nokia. Part of the work
was supported by the Nokia Research Center, Switzerland. I thank Imad Aad, Debmalya
Biswas, Olivier Bornet, Olivier Dousse, Juha Laurila, and Valtteri Niemi for valuable input
and support in performing the Nokia case study.

The work described in Chapters 5 and 6 was done in collaboration with David Basin,
Germano Caronni, Sarah Ereth, Felix Klaedtke, and Heiko Mantel. Part of the work was
supported by Google Inc. and the Zurich Information Security and Privacy Center (www.
zisc.ethz.ch). We thank Thomas Dübendorfer, Eric Grosse, Sebastiaan Indesteege, Loren
Kohnfelder, Susanne Landers, Jan Monsch, Christoph Raupacher, Mario Strasser, and Harald
Wagener for helpful discussions and support in performing the Google case study.
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2 Preliminaries

In this chapter, we review metric first-order temporal logic (MFOTL), its use in monitoring,
and the MFOTL monitoring algorithm.

2.1 Metric First-order Temporal Logic

Syntax and Semantics. Let I be the set of nonempty intervals over N. We write an interval
I ∈ I as [b, b′) := {a ∈ N | b ≤ a < b′}, where b ∈ N, b′ ∈ N ∪ {∞}, and b < b′. A signature S
is a tuple (C,R, ι), where C is a finite set of constant symbols, R is a finite set of predicate
symbols disjoint from C, and the function ι : R→ N associates each predicate symbol r ∈ R
with an arity ι(r) ∈ N. In the following, let S = (C,R, ι) be a signature and V a countably
infinite set of variables, assuming V ∩ (C ∪ R) = ∅.

Formulas over the signature S are given by the grammar

φ ::= t1 ≈ t2
∣∣∣ t1 ≺ t2

∣∣∣ r(t1, . . . , tι(r))
∣∣∣ (¬φ)

∣∣∣ (φ∨ φ)
∣∣∣ (∃x. φ)

∣∣∣ ( I φ)
∣∣∣ (#I φ)

∣∣∣ (φSI φ)
∣∣∣ (φUI φ) ,

where t1, t2, . . . range over the elements in V ∪C, and r, x, and I range over the elements in R,
V , and I, respectively.

To define MFOTL’s semantics, we need the following notions. A structure D over the
signature S consists of a domain |D| , ∅ and interpretations cD ∈ |D| and rD ⊆ |D|ι(r), for
each c ∈ C and r ∈ R. A temporal structure over S is a pair (D̄, τ̄), where D̄ = (D0,D1, . . . ) is
a sequence of structures over S and τ̄ = (τ0, τ1, . . . ) is a sequence of natural numbers, where
the following conditions hold:

(1) The sequence τ̄ is monotonically increasing (that is, τi ≤ τi+1, for all i ≥ 0) and makes
progress (that is, for every i ≥ 0, there is some j > i such that τ j > τi).

(2) D̄ has constant domains, that is, |Di| = |Di+1|, for all i ≥ 0. We denote the domain by |D̄|
and require that its elements are strictly linearly ordered by a relation <.

(3) Each constant symbol c ∈ C has a rigid interpretation, that is, cDi = cDi+1 , for all i ≥ 0.
We denote c’s interpretation by cD̄.

We call the indexes of the τis and Dis time points and the τis timestamps. In particular,
τi is the timestamp at time point i ∈ N. Note that there can be successive time points with
equal timestamps. Furthermore, note that the relations rD0 , rD1 , . . . in a temporal structure
(D̄, τ̄) corresponding to a predicate symbol r ∈ R may change over time. In contrast, the
interpretation of the constant symbols c ∈ C and the domain of the Dis do not change over
time.

A valuation is a mapping v : V → |D̄|. We abuse notation by applying a valuation v also to
constant symbols c ∈ C, with v(c) = cD̄. We write f [x 7→y] for altering a function f : X → Y
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2 Preliminaries

pointwise at x ∈ X. In particular, for a valuation v, a variable x, and d ∈ |D̄|, v[x 7→d] is the
valuation mapping x to d and leaving other variables’ valuation unchanged.

Satisfaction in MFOTL is defined by a binary relation |= over a tuple consisting of a
temporal structure, a valuation, and an index on the on side and a formula on the other side.
In the following, (D̄, τ̄) is a temporal structure over the signature S , with D̄ = (D0,D1, . . . ),
τ̄ = (τ0, τ1, . . . ), v a valuation, i ∈ N, and φ a formula over S .

(D̄, τ̄, v, i) |= t ≈ t′ iff v(t) = v(t′)
(D̄, τ̄, v, i) |= t ≺ t′ iff v(t) < v(t′)
(D̄, τ̄, v, i) |= r(t1, . . . , tι(r)) iff

(
v(t1), . . . , v(tι(r))

)
∈ rDi

(D̄, τ̄, v, i) |= (¬φ) iff (D̄, τ̄, v, i) 6|= φ

(D̄, τ̄, v, i) |= (φ ∨ ψ) iff (D̄, τ̄, v, i) |= φ or (D̄, τ̄, v, i) |= ψ

(D̄, τ̄, v, i) |= (∃x. φ) iff (D̄, τ̄, v[x 7→d], i) |= φ, for some d ∈ |D̄|
(D̄, τ̄, v, i) |= ( I φ) iff i > 0, τi − τi−1 ∈ I, and (D̄, τ̄, v, i − 1) |= φ

(D̄, τ̄, v, i) |= (#I φ) iff τi+1 − τi ∈ I and (D̄, τ̄, v, i + 1) |= φ

(D̄, τ̄, v, i) |= (φ SI ψ) iff for some j ≤ i, τi − τ j ∈ I, (D̄, τ̄, v, j) |= ψ,

and (D̄, τ̄, v, k) |= φ, for all k ∈ [ j + 1, i + 1)
(D̄, τ̄, v, i) |= (φ UI ψ) iff for some j ≥ i, τ j − τi ∈ I, (D̄, τ̄, v, j) |= ψ,

and (D̄, τ̄, v, k) |= φ, for all k ∈ [i, j)

The temporal operators I (“previous”),#I (“next”), SI (“since”), and UI (“until”) allow us
to express both quantitative and qualitative properties with respect to the ordering of elements
in the relations of the Dis in the temporal structure (D̄, τ̄). Note that they are labeled with
intervals I and a formula of the form ( I φ), (#I φ), (φ SI ψ), or (φ UI ψ) is only satisfied
in (D̄, τ̄) at the time point i, if it is satisfied within the bounds given by the interval I of the
respective temporal operator, which are relative to the current timestamp τi.

When a formula is not satisfied, we say that it is violated for the given valuation and time
point.

Terminology and Notation. We omit parentheses where possible by using the standard
conventions about the binding strengths of the logical connectives. For instance, Boolean
operators bind stronger than temporal ones and unary operators bind stronger than binary ones.
We use standard syntactic sugar such as �I φ := true SI φ, �I φ := true UI φ, �I φ := ¬ �I ¬φ,
and �I φ := ¬ �I ¬φ, where true := ∃x. x ≈ x. Intuitively, the formula �I φ states that φ holds
at some time point in the past within the time window I and the formula �I φ states that φ
holds at all time points in the past within the time window I. If the interval I includes zero,
then the current time point is also considered. The corresponding future operators are �I and
�I . We also use non-metric operators like � φ := �[0,∞) φ. A formula φ is bounded if the
interval I of every temporal operator UI occurring in φ is finite. We use standard terminology
like atomic formula and subformula.

2.2 Monitoring

We now illustrate how we use of MFOTL and the monitoring algorithm for compliance
checking [BKMP08]. Consider the simple policy stating that reports must have been approved
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within at most 10 time units before they are published:

�∀x. publish(x)→ �[0,11) approve(x) .

We assume that the actions for publishing and approving reports are logged in relations.
Specifically, for each time point i ∈ N, we have the unary relations PUBLISHi and APPROVEi

such that (1) f ∈ PUBLISHi iff the report f is published at time point i and (2) f ∈ APPROVEi

iff the report f is approved at time point i. Observe that there can be multiple approvals at the
same time point for different reports. Furthermore, every time point i has a timestamp τi ∈ N.

Given a sequence of logged publishing and approval actions, the corresponding temporal
structure (D̄, τ̄) with D̄ = (D0,D1, . . . ) and τ̄ = (τ0, τ1, . . . ) is as follows. The only predicate
symbols in D̄’s signature are publish and approve, both of arity 1. We assume that every
report is uniquely identified by a natural number. The domain of D̄ contains all these numbers,
that is, |D̄| ⊇ N. The ith structure in D̄ contains the relations PUBLISHi and APPROVEi. The
ith timestamp is simply τi, the time when these actions occurred.

To detect policy violations, our monitoring algorithm iteratively processes the tem-
poral structure (D̄, τ̄) representing the stream of logged actions. This can be done of-
fline or online. At each time point i, it outputs the valuations satisfying the negation
of the formula ψ = publish(x) → �[0,11) approve(x), which is ¬ψ and equivalent to
publish(x) ∧ �[0,11) ¬approve(x). Note that we drop the outermost quantifier since we are
not only interested in whether the policy is violated but we also want to provide additional
information about the reported violations, namely, the reports that were published and not
approved within the specified time window.

In a nutshell, the monitoring algorithm works as follows. It iterates over the structures
Di and their associated timestamps τi, where i is initially 0 and is incremented with each
iteration. At each iteration, the algorithm incrementally maintains a collection of finite
auxiliary relations for previous time points. Roughly speaking, for each time point j ≤ i, these
relations store the elements that satisfy the temporal subformulas of ¬ψ at the time point j.
If the temporal subformula of ¬ψ refers to future time points, the algorithm might need to
postpone the construction of such an auxiliary relation to a later iteration, until the processed
prefix of (D̄, τ̄) is long enough to evaluate the subformula at time point j. The algorithm
discards auxiliary relations whenever they become irrelevant for detecting further violations.
The monitoring algorithm has been implemented in the tool MONPOLY [BHKZ12].

In general, we assume that policies formalized in MFOTL are of the form �ψ, where
ψ is bounded. Since ψ is bounded, the monitor only needs to take into account a finite
prefix of (D̄, τ̄) when determining the satisfying valuations of ¬ψ at any given time point.
To effectively determine all these valuations, we also assume here that predicate symbols
have finite interpretations in (D̄, τ̄), that is, the relation rD j is finite, for every predicate
symbol r and every j ∈ N. Furthermore, we require that ¬ψ can be rewritten to a formula
that is temporal safe-range [BKMP08], a generalization of the standard notion of safe-range
database queries [AHV94]. We refer to [BKMP08] for a detailed description of the mon-
itoring algorithm. Additional algorithmic details are also presented below, for the sake of
completeness.

Figure 2.1 presents the monitoring algorithm Mψ. In the following, we briefly explain the
pseudo code.

Mψ first rewrites the negation of ψ. Heuristics are used that try to rewrite ¬ψ into a
formula φ that satisfies certain syntactic criteria that guarantee that it is temporal safe-range.
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1 Rewrite ¬ψ; proceed only if rewritten formula φ is in the monitorable fragment of MFOTL.
2 ` ← 0
3 i← 0
4 Q←

{(
α, 0,wait(α)

) ∣∣∣ α is a temporal subformula of φ
}

5 loop
6 forall (α, j, ∅) ∈ Q do
7 Build auxiliary relation for α and time point j using the auxiliary relations for the

temporal subformulas of α at time point j − 1, if j > 0.
8 while all auxiliary relations for time point i are built do
9 Evaluate φ at time point i by using the auxiliary relations for time point i; output

violations together with timestamp τi.
10 If i > 0, discard all relations for time point i − 1.
11 i← i + 1

12 Q←
{(
α, ` + 1,wait(α)

) ∣∣∣ α is a temporal subformula of φ
}
∪{(

α, j,
⋃
α′∈update(S ,τ`+1−τ`) wait(α′)

) ∣∣∣ (α, j, S ) ∈ Q and S , ∅
}

13 ` ← ` + 1

Figure 2.1: The monitoring algorithm Mψ

If these criteria are not satisfied, then Mψ stops. For monitoring, Mψ uses two counters
` and i. The counter ` is the index of the current element (D`, τ`) in the input sequence
(D0, τ0), (D1, τ1), . . . , which is processed sequentially. Initially, ` is 0 and it is incremented
with each loop iteration (lines 5–13). The counter i is the index of the next time point i
(possibly in the past, from `’s point of view) that is checked for violations, that is, the next
time point for which the monitor outputs the assignments satisfying φ.

The evaluation is delayed until all auxiliary relations for the temporal subformulas of φ
are built (lines 8–11), that is, subformulas of φ where the outermost connective is one of the
temporal operators  I , #I , SI , or UI . Furthermore, Mψ uses the list1 Q to ensure that the
auxiliary relations for the time points are built at the right time: if (α, j, ∅) is an element of Q
at the beginning of a loop iteration, enough time has elapsed to build the auxiliary relations
for the temporal subformula α and time point j. Without loss of generality, we assume that
each temporal subformula α occurs only once in φ. Mψ initializes Q in line 4. The function
wait identifies the subformulas that delay the formula evaluation:

wait(α) :=


wait(β) if α = ¬β, α = ∃x. β, or α =  I β,
wait(β) ∪ wait(γ) if α = β ∨ γ or α = β SI γ,
{α} if α = #I β or α = β UI γ,
∅ otherwise.

The list Q is updated in line 12 before we increment ` in line 13 and start a new loop iteration.
The update adds a new tuple (α, ` + 1,wait(α)) to Q, for each temporal subformula α of φ,
and it removes tuples of the form (α, j, ∅) from Q. Moreover, for tuples (α, j, S ) with S , ∅,
the set S is updated using the functions wait and update, accounting for the elapsed time to

1We abuse notation by using set notation for lists. Moreover, we assume that Q is ordered so that (α, j, S ) occurs
before (α′, j′, S ′), whenever α is a proper subformula of α′, or α = α′ and j < j′.
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the next time point, that is, τ`+1 − τ`. For a set of formulas U and t ∈ N, update(U, t) is the set

{β |#I β ∈ U} ∪

{β U[max{0,b−t},b′−t) γ | β U[b,b′) γ ∈ U, with b′ − t > 0} ∪
{β | β U[b,b′) γ ∈ U or γ U[b,b′) β ∈ U, with b′ − t ≤ 0} .

In line 7, we build the auxiliary relations for which enough time has elapsed, that is, the
relations for α at time point j with (α, j, ∅) ∈ Q. To efficiently build these relations, we use
incremental constructions that reuse relations from the previous time point. In lines 8–11, if
all the relations for time point i have been built, then Mψ outputs the valuations violating φ at
time point i together with the timestamp τi. Furthermore, after each output, the relations at
time point i − 1 are discarded (if i > 0) and i is incremented.
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3 Monitoring Concurrently Logged Actions

In this chapter, we provide the theory for monitoring concurrently logged actions. In particular,
in Section 3.1, we prove the intractability of monitoring when multiple log files are produced
in a concurrent setting. In Section 3.2, we motivate two solutions where only a single
representative log is monitored. In Sections 3.3 and 3.4, we show when monitoring a single
such log is sufficient. In Section 3.5, we compare the two solutions.

We first illustrate the problem with monitoring concurrently logged actions which give
rise to partially ordered logs. Note that the monitoring algorithm assumes a total ordering
on the logged actions. However, a total ordering is not necessarily available in a distributed
and concurrent system. Moreover, policy compliance may depend on such a total ordering.
For example, consider the policy for publishing and approving reports and a system in which
the publish and approval actions are performed and logged by different system parts. If two
such corresponding actions are equally timestamped and when assuming an interleaving
semantics of the system parts, then two orderings of the actions are possible: (i) the report
is first approved and then published and (ii) the report is published before being approved.
For the ordering (i) the policy is satisfied, while for (ii) it is violated in case there is no other
approval within the specified time window.

3.1 Intractability

In this section, we prove the intractability of monitoring when multiple log files are produced
in a concurrent setting.

In the remainder of this thesis, unless otherwise noted, we assume that all temporal structures
have the same signature (C,R, ι), the same domain D, and that constant symbols in C are
interpreted equally. Note that any two temporal structures whose common constant symbols
are equally interpreted can easily be extended so that their extensions fulfill this requirement.

Log Interleavings. Intuitively, an interleaving of logs preserves the ordering of the logged
actions with respect to their timestamps, but allows for any possible ordering of actions with
equal timestamps that are recorded by different log producers. To define an interleaving, for a
function f : X → Y , let img( f ) denote the set {y ∈ Y | f (x) = y, for some x ∈ X}.

Definition 3.1.1. Let (D̄1, τ̄1), (D̄2, τ̄2), and (D̄, τ̄) be temporal structures. (D̄, τ̄) is an
interleaving of (D̄1, τ̄1) and (D̄2, τ̄2) if there are strictly monotonic functions f1, f2 : N→ N

with

(1) img( f1) ∪ img( f2) = N,

(2) img( f1) ∩ img( f2) = ∅, and

(3) τk
i = τ fk(i) and rD

k
i = rD fk (i) , for all k ∈ {1, 2}, i ∈ N, r ∈ R.
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We denote by (D̄1, τ̄1) ./ (D̄2, τ̄2) the set of interleavings of the temporal structures (D̄1, τ̄1)
and (D̄2, τ̄2).

Since there are usually multiple interleavings of two temporal structures, we formulate
policy violations with respect to a set of temporal structures.

Definition 3.1.2. Let T be a set of temporal structures.

(1) T weakly violates the formula φ at time point i ∈ N if for some (D̄, τ̄) ∈ T and some
valuation v, it holds that (D̄, τ̄, v, i) 6|= φ.

(2) T strongly violates the formula φ at time point i ∈ N if for all (D̄, τ̄) ∈ T, there is some
valuation v such that (D̄, τ̄, v, i) 6|= φ.

Unfortunately, even in a propositional setting, determining whether the set of interleavings
weakly or strongly violates a formula is intractable.

Theorem 3.1.3. Let (D̄1, τ̄1) and (D̄2, τ̄2) be temporal structures, i ∈ N, and φ a quantifier-
free sentence with only Boolean and non-metric past operators that neither contains the
equality symbol ≈ nor the ordering symbol ≺.

1. Determining whether the set of interleavings (D̄1, τ̄1) ./ (D̄2, τ̄2) weakly violates φ at i is
NP-complete.

2. Determining whether the set of interleavings (D̄1, τ̄1) ./ (D̄2, τ̄2) strongly violates φ at i is
coNP-complete.

Note that both decision problems are well defined as φ does not contain future operators.
We therefore only need to examine the finite prefixes with length i + 1 of the interleavings to
determine whether φ is weakly or strongly violated at the time point i.

Before proving Theorem 3.1.3, we remark that related intractability results for linear-
time temporal logic (LTL) on so-called partially ordered traces are given in [MMV08] and
[GMM06]. The setting in [MMV08] is different from ours. In particular, it is unclear how to
describe the set of interleavings of two timestamped traces using partially ordered traces as
defined in [MMV08]. Moreover, we reduce the checking of the satisfiability and validity of
formulas in propositional logic, respectively, to the respective decision problem for proving its
hardness. In [MMV08], the global-predicate-detection decision problem [CG98] is used. The
setting in [GMM06] allows for arbitrary partial orders and hence could be used to describe
the set of interleavings of two timestamped traces. The authors reduce the decision problem
3-SAT to the problem of determining whether all possible interleavings satisfy a formula.

Next, we prove Theorem 3.1.3.

Membership. The decision problem in Theorem 3.1.3(1) is in NP as a nondeterministic
Turing machine can first guess the violating interleaving up to the given time point and then
verify its guess in polynomial time [MS03]. Note that the Turing machine does not need
to guess a valuation, as the input formula is a quantifier-free sentence and thus contains no
variables. The decision problem in Theorem 3.1.3(2) is in coNP since its complement is in
NP for the negation of the input formula.
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Hardness. Hardness of the decision problem in Theorem 3.1.3(1) is established by poly-
nomially reducing SAT to it. Analogously, the coNP-hardness of the decision problem
in Theorem 3.1.3(2) is shown by polynomially reducing TAUT to it.

Reduction from SAT. We show NP-hardness of the decision problem in Theorem 3.1.3(1)
by a reduction from SAT. The SAT problem asks whether a given propositional formula is
satisfiable. SAT is NP-hard.

To fix notation, we recall that a propositional formula α over a set of atomic propositions P
is satisfiable iff there is an assignment θ of propositions to truth values ⊥ (denoting false) and
> (denoting true), that is, θ : P→ {⊥,>}, such that θ(α) = >, where θ is homomorphically
extended from atomic propositions to formulas.

Suppose P = {p0, . . . , pn−1}, with n ≥ 0, is a set of atomic propositions. Let S be the
signature (C,R, ι) with C = {c}, R = {q0, r0, . . . , qn−1, rn−1}, and ι(qi) = ι(ri) = 1, for any
0 ≤ i < n. The two temporal structures (D̄1, τ̄1) and (D̄2, τ̄2) over S are given by |D̄| = {c},
cD̄ = c, τ1

i = τ2
i = i, and

q
Dk

j
i =

{
{c} if k = 1 and i = j,
∅ otherwise,

r
Dk

j
i =

{
{c} if k = 2 and i = j,
∅ otherwise,

for any i ∈ N, k ∈ {1, 2}, and i, j ∈ N with 0 ≤ i < n,
Given a propositional formula α over P, the MFOTL formula pαq is obtained by replacing

each occurrence of a proposition pi in α with �
(
ri(c) ∧ � qi(c)

)
. Thus, given a propositional

formula α, the reduction constructs the two prefixes of length n of (D̄1, τ̄1) and (D̄2, τ̄2) and
the MFOTL formula pαq. This reduction is linear in the length of α. Its correctness is shown
by Lemma 3.1.6. The following remarks and lemma will be needed.

Remark 3.1.4. For any interleaving (D̄, τ̄) ∈ (D̄1, τ̄1) ./ (D̄2, τ̄2), the functions f1 and f2 in
Definition 3.1.1 satisfy fk(i) ∈ {2i, 2i + 1} where k ∈ {1, 2}. Moreover, these functions are
unique, that is, if g1, g2 : N→ N are strictly monotonic functions satisfying conditions (1)–(3)
in Definition 3.1.1, then either g1 = f1 and g2 = f2, or g1 = f2 and g2 = f1. Furthermore, for
any strictly monotonic functions f1 and f2 satisfying conditions (1) and (2) in Definition 3.1.1
and with f1(i), f2(i) ∈ {2i, 2i + 1} for 0 ≤ i < n, there is a unique temporal structure (D̄, τ̄) such
that f1 and f2 also satisfy condition (3). In other words, the functions f1 and f2 determine an
interleaving of (D̄1, τ̄1) and (D̄2, τ̄2).

Lemma 3.1.5. Let α be a propositional formula, θ a truth value assignment, v a valuation,
and (D̄, τ̄) an interleaving of (D̄1, τ̄1) ./ (D̄2, τ̄2) given by the functions f1 and f2 such that
θ(pi) = > iff f1(i) = 2i, for any i with 0 ≤ i < n. Then θ(α) = > iff (D̄, τ̄, v, 2n) |= pαq.

Proof. We use structural induction on the form of α. The only interesting case is the base
case; the other cases follow directly from the induction hypotheses. Thus let α = pi ∈ P.

Suppose that (D̄, τ̄, v, 2n) |= �(ri(c) ∧ � qi(c)). That is, there is a time point j ≤ 2n such
that (D̄, τ̄, v, j) |= ri(c) and such that there is a time point j′ ≤ j for which (D̄, τ̄, v, j′) |= qi(c).
Then c ∈ rD j

i and c ∈ q
D j′

i . From the definition of an interleaving and the definitions of the
interpretations of the predicate symbols qi and ri, it follows that j = f2(i) and j′ = f1(i). Then,
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as f1(i), f2(i) ∈ {2i, 2i + 1}, f1(i) , f2(i), and j′ ≤ j, we have that f1(i) = 2i and f2(i) = 2i + 1.
Thus θ(pi) = >.

Suppose that θ(α) = >. Then f1(i) = 2i and f2(i) = 2i + 1. We have (D̄, τ̄, v, 2i) |= qi(c)
and (D̄, τ̄, v, 2i + 1) |= ri(c). Thus (D̄, τ̄, v, 2i + 1) |= ri(c) ∧ � qi(c) and clearly (D̄, τ̄, v, 2n) |=
�
(
ri(c) ∧ � qi(c)

)
. �

Lemma 3.1.6. Let α be a propositional formula. It holds that α is satisfiable iff (D̄1, τ̄1) ./

(D̄2, τ̄2) weakly violates ¬pαq at time point 2n.

Proof. Suppose first that α is satisfiable. Then there is a truth value assignment θ such that
θ(α) = >. Let (D̄, τ̄) be the interleaving determined by the functions f1 and f2 given by

f1(i) =

{
2i if θ(pi) = >,

2i + 1 otherwise,

and

f2(i) =

{
2i if θ(pi) = ⊥,

2i + 1 otherwise.

Let v be an arbitrary valuation. From Lemma 3.1.5, we obtain that (D̄, τ̄, v, 2n) |= pαq, that is,
(D̄, τ̄, v, 2n) 6|= ¬pαq.

Suppose now that (D̄1, τ̄1) ./ (D̄2, τ̄2) weakly violates ¬pαq at time point 2n. Then there is
an interleaving (D̄, τ̄) and a valuation v such that (D̄, τ̄, v, 2n) 6|= ¬pαq. Let f1 and f2 be the
functions determined by (D̄, τ̄) as in Definition 3.1.1. Let θ be a truth value assignment such
that θ(pi) = > if f1(i) = 2i. Using again Lemma 3.1.5, we get that θ is a satisfying assignment
for α. �

Reduction from TAUT. We show coNP-hardness of the decision problem in Theo-
rem 3.1.3(2) by reduction from TAUT. The TAUT problem asks whether a given propositional
formula is a tautology. TAUT is coNP-hard.

We recall that a propositional formula α over a set of atomic propositions P is a tautology
if θ(α) = > for any assignment θ of propositions to truth values.

We use the same reduction that was used in the decision problem in Theorem 3.1.3(1). The
correctness of the reduction follows from the following lemma.

Lemma 3.1.7. Let α be a propositional formula. Then α is a tautology iff (D̄1, τ̄1) ./ (D̄2, τ̄2)
strongly violates ¬pαq at time point 2n.

Proof. Suppose first that α is a tautology. Let (D̄, τ̄) be an arbitrary interleaving in (D̄1, τ̄1) ./

(D̄2, τ̄2) and f1 and f2 be functions as in Definition 3.1.1. Let θ be a truth value assignment
such that θ(pi) = > iff f1(i) = 2i. Let v be an arbitrary valuation. Using Lemma 3.1.5, we
obtain that (D̄, τ̄, v, 2n) 6|= ¬pαq. Hence (D̄1, τ̄1) ./ (D̄2, τ̄2) strongly violates ¬pαq at time point
2n.

Suppose now that (D̄1, τ̄1) ./ (D̄2, τ̄2) strongly violates ¬pαq at time point 2n. Let θ be an
arbitrary truth value assignment. Let (D̄, τ̄) be the interleaving determined by the functions f1
and f2 given by

f1(i) =

{
2i if θ(pi) = >,

2i + 1 otherwise,
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and

f2(i) =

{
2i if θ(pi) = ⊥,

2i + 1 otherwise.

There is a valuation v such (D̄, τ̄, v, 2n) 6|= ¬pαq. Using again Lemma 3.1.5, we have that θ is a
satisfying assignment for α. Hence α is a tautology. �

3.2 Sufficient Logs

In this section, we motivate two solutions where only a single representative log is monitored.
We first give conditions with respect to an arbitrary set of temporal structures for when it
suffices to monitor a single temporal structure.

Definition 3.2.1. The temporal structure (C̄, κ̄) is sufficient for the formula φ on the set T of
temporal structures if for all valuations v, the following conditions are fulfilled:

(S1) If (C̄, κ̄, v, 0) |= φ then (D̄, τ̄, v, 0) |= φ, for all (D̄, τ̄) ∈ T.

(S2) If (C̄, κ̄, v, 0) 6|= φ then (D̄, τ̄, v, 0) 6|= φ, for all (D̄, τ̄) ∈ T.

Note that the actual ordering of actions logged with equal timestamps in a concurrent
system cannot be known unless there is an additional mechanism to order these events. Instead
of adding such mechanisms, we identify two classes of policies, which are indifferent to the
ordering of equally timestamped actions, the interleaving-sufficient and collapse-sufficient
policies. Formulas in both classes can be efficiently monitored by inspecting just a single
temporal structure instead of all the possible interleavings. For both classes, the set T in
Definition 3.2.1 is the set of all interleavings of two temporal structures. For an interleaving-
sufficient policy, inspecting an arbitrary interleaving is sufficient to determine whether the
policy is strongly violated. With collapse-sufficient policies we exploit the inability to
distinguish the ordering of events logged with equal timestamps to make monitoring more
efficient and inspect the so-called collapse of an interleaving:

Definition 3.2.2. Let (D̄, τ̄) and (C̄, κ̄) be temporal structures. (C̄, κ̄) is a collapse of (D̄, τ̄) if
there is a monotonic surjective function f : N→ N such that

(1) if τi = τ j then f (i) = f ( j), for all i, j ∈ N,

(2) κ f (i) = τi, for all i ∈ N, and

(3) rC j =
⋃

i∈ f −1( j) rDi , for all j ∈ N and r ∈ R.

Intuitively, the structures of the temporal structure (D̄, τ̄) with equal timestamps are col-
lapsed into a single structure. Figure 3.1 depicts an example of collapsing. The collapse
is uniquely defined and we denote it by col(D̄, τ̄). Furthermore, the collapses of temporal
structures in the set of interleavings of two given temporal structures are all isomorphic.
Note that the set of interleavings is strictly included in the set of collapse pre-images, that is,
(D̄, τ̄) ./ (D̄′, τ̄′) ( col−1(C̄, κ̄), where (C̄, κ̄) is the collapse of an interleaving of the temporal
structures (D̄, τ̄) and (D̄′, τ̄′).
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log1
-

time

. . .2012–09–10

approve(#104)

2012–09–12

approve(#105)

2012–09–12

approve(#106)

log2
-

time

. . .2012–09–10

publish(#104)

2012–09–14

publish(#105)

logc
-

time

. . .2012–09–10

approve(#104)
publish(#104)

2012–09–12

approve(#105)
approve(#106)

2012–09–14

publish(#105)

Figure 3.1: Example of a Collapsed Interleaving, logc, of the Temporal Structures log1 and
log2

3.3 Monitoring an Interleaving

In this section we describe an interleaving-sufficient fragment. Intuitively, interleaving-
sufficient formulas are those formulas that yield neither false positives nor false negatives
when monitoring an interleaving. This is because they either satisfy all possible interleavings
of two temporal structures or they violate all possible interleavings.

Definition 3.3.1. Let φ be a formula. For k ∈ {1, 2}, we say that φ has the property (Ik) if (C̄, κ̄)
fulfills the condition (Sk) in Definition 3.2.1 with respect to φ and (D̄, τ̄) ./ (D̄′, τ̄′), for every
(D̄, τ̄), (D̄′, τ̄′), and (C̄, κ̄), where (C̄, κ̄) is an interleaving of (D̄, τ̄) and (D̄′, τ̄′). Moreover, φ
is interleaving-sufficient if it has the properties (I1) and (I2).

Note that we define interleaving-sufficiency only as a property of the formula. We could
alternatively consider a refined notion that limits the interleavings on which the formula must
hold. For example, if the relations of certain predicate symbols are logged by a single logging
mechanism then we can impose conditions that the temporal structures (D̄, τ̄) and (D̄′, τ̄′) in
the above definition must fulfill. This would enlarge the set of interleaving-sufficient formulas.
However, for the ease of exposition, we restrict ourselves here to the property as defined in
Definition 3.3.1.

Monitoring an arbitrary interleaving with respect to an interleaving-sufficient formula is
correct for strong violations. Since the formula has property (I2), violations found in (C̄, κ̄)
imply that the set of interleavings strongly violates the formula. The converse is ensured by
the property (I1): if no violation is found in (C̄, κ̄), then all interleavings are policy compliant.
Furthermore, by monitoring (C̄, κ̄) we also detect when the set of interleavings both weakly
and strongly violates the given formula. The reason is that if a formula is strongly violated by
a set of interleavings then it is also weakly violated, since the set of interleavings is always
nonempty.

Example 3.3.2. Recall the formula �∀x. publish(x)→ �[0,11) approve(x) from the example
in Section 2.2. It is not interleaving-sufficient. Suppose that a report x is published in (D̄1, τ̄1)
at time point i, that is, x ∈ publishD

1
i and only approved in (D̄2, τ̄2) at the equally timestamped
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time point j, that is, x ∈ approveD
2
j with τ2

j = τ1
i . Then there is an interleaving (D̄, τ̄) ∈

(D̄1, τ̄1) ./(D̄2, τ̄2) where the approval action comes (pointwise) strictly after the publish action.
We cannot handle this formula correctly by monitoring just a single interleaving of the given
temporal structures (D̄1, τ̄1) and (D̄2, τ̄2).

A slightly stronger policy however can be efficiently monitored. Namely, the policy that
requires that an approval action must happen timewise strictly before the publish action, that
is, �∀x. publish(x) → �[1,11) approve(x). This formula is interleaving-sufficient. Similarly,
�∀x. publish(x) → �[0,1) �[0,11) approve(x) is also interleaving-sufficient. It formalizes the
slightly weaker policy where every publish action must be approved at a time point with a
timestamp that is less than or equal to the timestamp of the time point when the publish action
happens.

In Theorem 3.3.4, we show the undecidability of checking whether a formula has the
interleaving-sufficient property. The theorem follows from the undecidability of the tautology
problem for first-order temporal logic (FOTL) formulas, that is, MFOTL formulas where the
temporal operators do not have any metric constraints, established in Lemma 3.3.3.

Lemma 3.3.3. Given a FOTL formula φ, it is undecidable whether φ is a tautology.

Proof. We reduce the halting problem of a deterministic Turing machine (DTM) with the
empty word as input to the FOTL tautology problem. We first introduce notation for a DTM
and then proceed with the reduction.

Different types of Turing machines are used in the literature, so we briefly describe the one
we use. For a more detailed introduction to Turing machines, see [HMU00]. Our DTM has a
tape and a head to read and write the tape. The tape consists of cells and is infinite in both
directions. The cells of the tape are indexed with the indexes coming from Z. A single tape
symbol is written in each cell. Initially, the input to the DTM is written on the tape starting at
cell 0. The rest of the tape is filled with the blank symbol. We consider only the empty word
as input, so the whole tape is filled with the blank symbol. The head of the DTM is initially
positioned at cell 0.

The DTM is always in one of finitely many states and executes in steps. In each step, the
DTM reads the symbol on the tape at the cell where the head is positioned, writes a new
symbol into the cell, moves the head to the left, right, or not at all, and finally, the DTM may
make a transition into a new state. When the DTM reaches a final state, it continues to loop
forever in this state, always writes the same symbol onto the tape, and does not move the head.
We say that it halts.

Formally, the DTM is described by a tuple (Q, Γ,Σ, δ, q0, B, F), where the components are
as follows.

• Q is the finite set of states in which the DTM can be.

• Γ is the finite set of tape symbols.

• Σ ⊆ Γ is the finite set of input symbols.

• δ : Q × Γ → Q × Γ × {left, right, none} is the transition function. The arguments of
δ(q, x) are a state q in which the DTM is and a symbol x read from the tape where the
head is positioned. The value of δ(q, x) is a triple (p, y, d), where:
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– p is the next state into which the DTM transitions,

– y is the symbol to be written in the cell where the head is positioned, and

– d is left, right, or none indicating whether the head should move to the left, to the
right, or not move at all, respectively.

• q0 ∈ Q is the initial state of the DTM.

• B ∈ Γ \ Σ is the blank symbol.

• F ⊆ Q is the set of final states.

To ensure that the DTM loops in final states, we require that δ(q, x) = (q, x, none) for all
q ∈ F and all x ∈ Γ.

We now reduce the undecidable problem of deciding whether a DTM halts on the empty
word to the problem of deciding whether a FOTL formula is unsatisfiable. To describe a run
of the DTM we use the following predicate symbols.

• H(i) iff the head is positioned at cell i.

• Tx(i) iff the tape contains symbol x, other than the blank symbol, at position i.

• Iq iff the DTM is in state q.

To check for an empty symbol at position i on the tape, we use the syntactic sugar TB(i) :=∧
x∈Γ\{B} ¬Tx(i).
We represent positions on the tape with an index i ∈ Z. The left-most symbol of the input is

at position 0, where also the head is initially positioned.
We also need a successor function on Z. We define it as

S(i, j) := i ≺ j ∧ ∀k. (k ≺ i ∨ k ≈ i ∨ k ≈ j ∨ j ≺ k) .

We describe a non-halting run of the DTM M with the FOTL formula

ρM := �WELLFORMED ∧ ( � INIT) ∧ STEP ∧ ¬FINAL ,

where its subformulas are as follows.

• WELLFORMED ensures that the DTM is in a proper configuration. We define it as

WELLFORMED :=
(
∀i.∀ j.H(i) ∧ H( j)→ i ≈ j

)
∧(

∀i.
∧
x,y∈Γ

(
Tx(i) ∧ Ty(i)→ x ≈ y

))
∧∧

p,q∈Q

(
Ip ∧ Iq → p ≈ q

)
.

It ensures that the head is positioned at exactly one tape cell, that there is exactly one
symbol written on each tape cell, and that the DTM is in exactly one state.
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• INIT describes the initial configuration of the DTM. We define it as

INIT := H(0) ∧ Iq0 ∧ ∀i.TB(i) .

Note that we consider only the empty word as the input, so the whole tape is initially
filled with the blank symbol.

• STEP describes one step of the DTM. Let the tuples (q, x, p, y, d) represent the transition
function δ where (p, y, d) = δ(q, x). STEP is a conjunction of formulas representing all
those tuples. For tuples with d = left, the formula is

∀i.∀ j. Iq ∧ H( j) ∧ Tx( j) ∧ S(i, j)→ # Ip ∧ H(i) ∧ Ty( j) .

For tuples with d = right, the formula is

∀i.∀ j. Iq ∧ H(i) ∧ Tx(i) ∧ S(i, j)→ # Ip ∧ H( j) ∧ Ty(i) .

For tuples with d = none, the formula is

∀i. Iq ∧ H(i) ∧ Tx(i)→ # Ip ∧ H(i) ∧ Ty(i) .

In addition, the conjunction also contains the formula

∀i.∀ j.
∧
z∈Γ

(
H(i) ∧ i 0 j ∧ Tz( j)→ #Tz( j)

)
expressing the fact that the tape can change only at the position where the head is
positioned.

• FINAL describes the DTM entering a final state. We define

FINAL :=
∨
q∈F

Iq .

Every configuration of the DTM M in a run is represented by a time point in the model
of the FOTL formula ρM. Note that this is a valid MFOTL model. At any step it holds that
M has written at most a finite number of cells on the tape, so the relations of the predicate
symbols Tx for x ∈ Γ \ {B} are always finite. There is no predicate symbol to directly represent
the blank symbol.

The DTM M does not halt if there is a model where ρM is satisfied. Since the formula ρM

can be effectively constructed from the description of M, the undecidability of the halting
problem implies the undecidability of the unsatisfiability problem for FOTL formulas. By
considering the negation of a FOTL formula, it follows that the tautology problem is also
undecidable. �

Theorem 3.3.4. Given an MFOTL formula φ, it is undecidable whether φ is interleaving-
sufficient.

21



3 Monitoring Concurrently Logged Actions

Proof. We restrict ourselves without loss of generality to FOTL formulas. From Lemma 3.3.3
we know that the problem whether a FOTL formula φ is a tautology is undecidable. Hence, also
determining whether φ is unsatisfiable is an undecidable problem. We proceed by reducing
the problem of deciding whether φ is unsatisfiable to deciding whether φ is interleaving-
sufficient. To this end, we show the following equivalence: φ is unsatisfiable iff the formula
φ ∧ � p→ � q is interleaving-sufficient, where the predicate symbols p and q do not occur in
φ.

Note that if φ falls into the fragment of MFOTL that we can monitor, then it is of the form
�ψ. The formula φ ∧ � p → � q can then be rewritten to �ψ ∧ (p→ � q) and hence also
falls into the fragment of MFOTL that we can monitor.

We first show the direction from left to right. As φ is unsatisfiable, φ ∧ � p → � q is
unsatisfiable. Hence, it is interleaving-sufficient.

Next, we show the direction from right to left and prove that if φ is satisfiable then
φ ∧ � p→ � q is not interleaving-sufficient. If φ is satisfiable, there is a temporal structure
(D̄, τ̄) on which φ is satisfied. As φ’s temporal operators do not have any temporal constraints,
we can pick τ̄ so that the first two time points have an equal timestamp. That is, τ0 = τ1.
Furthermore, because the predicate symbols p and q do not occur in the formula φ, we can
pick D̄ so that the predicate symbol q is satisfied only at the first time point and the predicate
symbol p is satisfied only at the second time point. That is, (D̄, τ̄, v, 0) |= q, but (D̄, τ̄, v, i) 6|= q,
for all i , 0 and any valuation v. Similarly, (D̄, τ̄, v, 1) |= p, but (D̄, τ̄, v, i) 6|= p, for all i , 1.
Clearly, this temporal structure satisfies our formula, that is, (D̄, τ̄, v, 0) |= φ ∧ � p→ � q.

Let (D̄1, τ̄1) and (D̄2, τ̄2) be two temporal structures such that (D̄, τ̄) ∈ (D̄1, τ̄1) ./ (D̄2, τ̄2)
and for all i ∈ N we have that (D̄1, τ̄1, v, i) 6|= q and (D̄2, τ̄2, v, i) 6|= p. Clearly, there is another
interleaving (D̄′, τ̄′) ∈ (D̄1, τ̄1) ./ (D̄2, τ̄2), where the first two time points are in the opposite
order as in (D̄, τ̄). That is, p is satisfied only on the first time point and q is satisfied only on
the second time point. Then (D̄′, τ̄′, v, 0) 6|= � p → � q and (D̄′, τ̄′, v, 0) 6|= φ ∧ � p → � q.
As the formula φ ∧ � p → � q is satisfied on one interleaving, but not on another one, the
formula is not interleaving-sufficient. �

Given undecidability, we proceed by providing sufficient conditions for φ being interleaving-
sufficient. We do this by identifying a subset of formulas using a labeling algorithm.

Our algorithm labels the atomic subformulas of the given formula and propagates these
labels bottom-up to the formula’s root using a fixed set of labeling rules. We use two labels:
ONE and ALL. They represent properties that capture the relationship between violations
found in one interleaving and violations found in other interleavings. If a formula with the
label ONE is satisfied at a time point in one interleaving, then the formula is also satisfied
in all other interleavings at the corresponding time point. If a formula with the label ALL is
satisfied at a time point with timestamp τ in one interleaving, then the formula is also satisfied
in all other interleavings at all time points with the timestamp τ. We formally state these
properties in the following definition.

Definition 3.3.5. Let (D̄1, τ̄1) and (D̄2, τ̄2) be two temporal structures and (D̄, τ̄) and (D̄′, τ̄′)
be two arbitrary interleavings from the set (D̄1, τ̄1) ./ (D̄2, τ̄2).

– We say that the formula φ has the property ONE when the following holds: If (D̄, τ̄, v, i) |= φ,
for some valuation v and time point i ∈ N then (D̄′, τ̄′, v, i′) |= φ for the time point i′ ∈ N,
where i′ is the time point corresponding to i. That is, there are k ∈ {1, 2} and j ∈ N with
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φ : ALL
φ : ONE

t ≈ t′ : ALL t ≺ t′ : ALL r(t1, . . . , tι(r)) : ONE

φ : ONE
¬φ : ONE

φ : ALL
¬φ : ALL

φ : ONE ψ : ONE
φ ∨ ψ : ONE

φ : ALL ψ : ALL
φ ∨ ψ : ALL

∃x. φ : ONE
∃x. φ : ONE

∃x. φ : ALL
∃x. φ : ALL

φ : ALL ψ : ALL
φ SI ψ : ALL

φ : ALL ψ : ALL
φ UI ψ : ALL

φ : ONE
�I φ : ALL

0 < I
φ : ONE
�I φ : ALL

0 < I
φ : ONE
�I �J φ : ALL

φ : ONE
�I �J φ : ALL

Figure 3.2: Labeling Rules (Interleaving)

i = fk( j) and i′ = f ′k ( j) with f1, f2 being the functions used in the interleaving (D̄, τ̄), and
f ′1 , f ′2 the functions used in the interleaving (D̄′, τ̄′).

– We say that the formula φ has the property ALL when the following holds: If (D̄, τ̄, v, i) |= φ,
for some valuation v and time point i ∈ N then for all time points i′ ∈ N with τi = τ′i′ , it
holds that (D̄′, τ̄′, v, i′) |= φ.

We overload notation and identify each label with its corresponding property. The labeling
is done using the rules in Figure 3.2. To improve readability, we use syntactic sugar in the
rules. When applying the rules, we assume that syntactic sugar is unfolded in both the rules
and the formula. Note that multiple rules may be applicable to a subformula. In this case,
multiple labels may be assigned to the subformula. We use the notation φ : ` as shorthand for
“φ’s label includes `.” By labeling the subformula bottom-up and by attempting to apply all
rules before proceeding up to the next subformula, we ensure that a formula is assigned with
all possible labels.

Lemma 3.3.6. Let φ be a formula. If φ can be labeled with `, then φ has the property `,
where ` ∈

{
ONE,ALL}.

Lemma 3.3.6 shows the soundness of our labeling rules. Before we formally show its
correctness, we intuitively explain the most representative rules. The first line in Figure 3.2
shows the weakening rule. The property corresponding to the label ALL implies the property
corresponding to ONE.

The next line shows rules for atomic formulas. An atomic formula t ≈ t′ or t ≺ t′ depends
only on the valuation and therefore can be labeled ALL. An atomic formula of the form
r(t1, . . . , tι(r)) can be labeled ONE. If a predicate symbol is satisfied at some time point in an
interleaving, then it is also satisfied at the corresponding time point in another interleaving.
Hence, we label it with ONE. However, we cannot label it with ALL because we do not know
whether it is satisfied at other time points with equal timestamps.

Next, we consider labeling rules for the temporal operator �I . If the formula �I φ is
satisfied at time point i, then the subformula φ is satisfied at some time point j ≤ i. If φ is
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labeled ONE, then in any other interleaving the time point corresponding to j also satisfies φ.
However, if the time points i and j have equal timestamps, then their relative ordering can be
exchanged in another interleaving. In this case, the formula �I φ would not be satisfied at the
time point corresponding to i.

If 0 < I then the time points i and j must have different timestamps. Therefore, their
relative ordering cannot be changed in any interleaving. In this case, not only the time point
corresponding to i satisfies the formula �I φ, but all time points with an equal timestamp as i
satisfy this formula. We can therefore propagate the label ONE as ALL if 0 < I, but cannot
propagate it if 0 ∈ I.

We also consider the case when the subformula φ is labeled ALL. In this case, all time
points with an equal timestamp as j satisfy φ. But then, independent of the relative ordering
of these time points, all time points with an equal timestamp as i satisfy �I φ. Hence, we can
propagate φ’s label ALL to �I φ without any restrictions on I. The rule for ALL is not shown
in Figure 3.2, but can be derived from the rule for the operator SI after unfolding the syntactic
sugar of �I φ into (∃x. x ≈ x) SI φ.

We can try to label a formula solely based on labeling rules that involve only a single
Boolean or temporal operator. However, by using more specialized labeling rules like the
one for �I �J ψ, we are more likely to succeed in propagating a label to the formula’s root.
Intuitively, with the nesting of the operators �I and �J , the ordering of equally timestamped
time points becomes irrelevant since, from a given time point, we can freely choose any of
these time points that satisfy the metric constraints given by the intervals I and J. Hence, a
labeling ONE for ψ allows us to label �I �J ψ with ALL.

Finally, there are no labeling rules for the temporal operators  I and #I because these
operators inherently rely on the relative ordering of time points.

Proof. We prove Lemma 3.3.6 by induction on the size of the derivation tree assigning label `
to φ. We make a case distinction based on the rule applied to label the formula, that is, the
rule at the tree’s root. However, for clarity, we generally group cases by the formula’s form.

For readability, and without loss of generality, we already fix two arbitrary interleavings
(D̄, τ̄) and (D̄′, τ̄′) of two given temporal structures. We also fix an arbitrary valuation v, an
arbitrary time point i in (D̄, τ̄), and the time point i′ in (D̄′, τ̄′) corresponding to the time
point i.

We first consider the weakening rule. Suppose that (D̄, τ̄, v, i) |= φ. By the induction
hypothesis, φ has the property ALL, so for all time points j ∈ N with τi = τ′j we have that
(D̄′, τ̄′, v, j) |= φ. But then the time point i′ is among those j’s, so (D̄′, τ̄′, v, i′) |= φ and φ has
the property ONE.

Next, we make a case distinction on the form of the formula. Consider formulas of the
form:

• t ≈ t′, where t and t′ are variables or constants. Suppose that (D̄, τ̄, v, i) |= t ≈ t′. It
follows that v(t) = v(t′). As this only depends on the valuation v, we have (D̄′, τ̄′, v, j) |=
t ≈ t′ for all j ∈ N and hence we can add the label ALL to the formula t ≈ t′.

• t ≺ t′, where t and t′ are variables or constants. This case is similar to the previous one.

• r(t1, . . . , tι(r)), where t1, . . . , tι(r) are variables or constants. Suppose that (D̄, τ̄, v, i) |=
r(t1, . . . , tι(r)). As i′ is the time point corresponding to i, it follows that rDi = rD

′

i′ .
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Hence, (D̄′, τ̄′, v, i′) |= r(t1, . . . , tι(r)) and r(t1, . . . , tι(r)) has the property ONE.

• ¬φ.

– We first show why the label ONE can be propagated. Suppose that φ : ONE and
(D̄, τ̄, v, i) |= ¬φ, from which it follows that (D̄, τ̄, v, i) 6|= φ. We claim that from
φ : ONE it follows that (D̄′, τ̄′, v, i′) 6|= φ. To achieve a contradiction, suppose
that (D̄′, τ̄′, v, i′) |= φ. By the induction hypothesis, φ has the property ONE, so it
follows that (D̄, τ̄, v, i) |= φ, which is a contradiction. Hence, (D̄′, τ̄′, v, i′) 6|= φ, so
that (D̄′, τ̄′, v, i′) |= ¬φ and ¬φ has the property ONE.

– Next we show why the label ALL can be propagated. Suppose that φ : ALL and
(D̄, τ̄, v, i) |= ¬φ, from which it follows that (D̄, τ̄, v, i) 6|= φ. We claim that from
φ : ALL it follows that (D̄′, τ̄′, v, j) 6|= φ for all j ∈ N with τi = τ′j. To achieve
a contradiction, suppose that (D̄′, τ̄′, v, k) |= φ for some k with τi = τ′k. By the
induction hypothesis, φ has the property ALL, so it follows that (D̄, τ̄, v, `) |= φ for
all ` ∈ N with τ` = τ′k = τi and hence (D̄, τ̄, v, i) |= φ, which is a contradiction.
Therefore, (D̄′, τ̄′, v, j) 6|= φ, so that (D̄′, τ̄′, v, j) |= ¬φ and ¬φ has the property
ALL.

• φ ∨ ψ.

– We first show why the label ONE can be propagated. Suppose that φ : ONE,
ψ : ONE, and (D̄, τ̄, v, i) |= φ ∨ ψ. It follows that 1) (D̄, τ̄, v, i) |= φ or 2)
(D̄, τ̄, v, i) |= ψ. If 1), then by the induction hypothesis φ has the property ONE
and it follows that (D̄′, τ̄′, v, i′) |= φ. If 2), then by the induction hypothesis ψ has
the property ONE and it follows that (D̄′, τ̄′, v, i′) |= ψ. Therefore, in both cases
we have that (D̄′, τ̄′, v, i′) |= φ ∨ ψ, so φ has the property ONE.

– The argument why the label ALL can be propagated is analogous.

• ∃x. φ.

– We first show why the label ONE can be propagated. Suppose that φ : ONE and
(D̄, τ̄, v, i) |= ∃x. φ. It follows that (D̄, τ̄, v[x 7→d], i) |= φ, for some d ∈ |D̄|. Since
|D̄| = |D̄′|, d is also in |D̄′|. By the induction hypothesis, φ has the property ONE,
and hence (D̄′, τ̄′, v[x 7→d], i′) |= φ and (D̄′, τ̄′, v, i′) |= ∃x. φ. Therefore, ∃x. φ
has the property ONE.

– The argument why the label ALL can be propagated is analogous.

• φ SI ψ. Suppose that φ : ALL, ψ : ALL, and (D̄, τ̄, v, i) |= φ SI ψ. It follows that there is
a j ≤ i such that τi − τ j ∈ I, (D̄, τ̄, v, j) |= ψ, and (D̄, τ̄, v, k) |= φ for all k with j < k ≤ i.
By the induction hypothesis, ψ has the property ALL. It follows that (D̄′, τ̄′, v, j) |= ψ

for all time points j′ with τ j = τ′j′ . Let j′max be the largest of such j′. By the induction
hypothesis, φ also has the property ALL. It follows that (D̄′, τ̄′, v, k′) |= φ for all k′ with
τ′j′max

< τ′k′ ≤ τ
′
i′ . Hence, for every time point i′′ with τ′i′′ = τ′i′ there is a j′ ≤ i′′ such

that τ′i′′ − τ
′
j′ ∈ I, (D̄′, τ̄′, v, j′) |= ψ, and (D̄′, τ̄′, v, k′′) |= φ for all k′′ with j′′ < k′′ ≤ i′′.

Therefore, (D̄′, τ̄′, v, k′) |= φ SI ψ and φ SI ψ has the property ALL.

• φ UI ψ. This case is similar to the previous one.
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• �I φ with 0 < I.

Suppose that φ : ONE and (D̄, τ̄, v, i) |= �I φ. There is then a time point j with
j ≤ i, τi − τ j ∈ I such that (D̄, τ̄, v, j) |= φ. By the induction hypothesis, φ has the
property ONE. It follows that there is a time point j′ in (D̄′, τ̄′) corresponding to j with
(D̄′, τ̄′, v, j′) |= φ. From 0 < I it follows that τ j < τi, so that τ′j′ < τ

′
i′ , and hence j′ < i′′

for all i′′ ∈ N with τi = τ′i′′ . Therefore, (D̄′, τ̄′, v, i′′) |= �I φ for all such i′′ and �I φ
has the property ALL.

• �I φ with 0 < I. This case is similar to the previous one.

• �I �J φ.

Suppose that φ : ONE and (D̄, τ̄, v, i) |= �I �J φ, so there are time points j and k with
j ≥ i, τ j − τi ∈ I, k ≤ j, τ j − τk ∈ J, and (D̄, τ̄, v, k) |= φ. By the induction hypothesis,
φ has the property ONE, so there is a time point k′ in (D̄′, τ̄′) corresponding to k with
(D̄′, τ̄′, v, k′) |= φ. To satisfy the formula �I �J φ on (D̄′, τ̄′) we pick the maximal j′

with τ′j′ = τ j. To see that this satisfies the formula we need to show that 1) j′ ≥ i′,
2) τ′j′ − τ

′
i′ ∈ I, 3) k′ ≤ j′, and 4) τ′j′ − τ

′
k′ ∈ J.

1) From τ j ≥ τi, τ′j′ = τ j, τ′i′ = τi we see that τ′j′ ≥ τ
′
i′ . From j′ being the maximal

time point with the timestamp τ′j′ it follows that j′ ≥ i′.

2) From τ j − τi ∈ I, τ′i′ = τi, and τ′j′ = τ j it follows that τ′j′ − τ
′
i′ ∈ I.

3) From τk ≤ τ j, τ′k′ = τk, τ′j′ = τ j we see that τ′k′ ≤ τ
′
j′ . From j′ being the maximal

time point with the timestamp τ′j′ , it follows that k′ ≤ j′.

4) From τ j − τk ∈ J, τ′j′ = τ j, and τ′k′ = τk it follows that τ′j′ − τ
′
k′ ∈ J.

Therefore, (D̄′, τ̄′, v, i′) |= �I �J φ and �I �J φ has the property ALL.

• �I �J φ. This case is similar to the previous one, but we pick the minimal time point
for the temporal operator �I .

�

Based on the labels at a formula’s root, we can determine if the formula is interleaving
sufficient, as shown in Theorem 3.3.8. To prove this theorem, we first establish in Lemma 3.3.7
a relation between the properties ONE and ALL and the properties (I1) and (I2).

Lemma 3.3.7. Let φ be a formula.

1. If φ has the property ALL, then φ has the properties (I1) and (I2).

2. If φ has the property ONE, then � φ has the properties (I1) and (I2).

Proof. We fix two arbitrary interleavings (D̄, τ̄) and (D̄′, τ̄′) of two given temporal structures.

1. We first show that φ has (I1). Suppose that φ has the property ALL and that (D̄, τ̄, v, 0) |= φ

for some valuation v. Since φ has the property ALL, it follows that (D̄′, τ̄′, v, i′) |= φ for all
time points i′ with τ0 = τ′i′ . Since τ0 = τ′0, it follows that (D̄′, τ̄′, v, 0) |= φ and hence φ
has (I1).
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Next, we show that φ has (I2). Suppose that φ has the property ALL and that (D̄, τ̄, v, 0) 6|= φ

for some valuation v. To achieve a contradiction, suppose that (D̄′, τ̄′, v, 0) |= φ. From
this and from φ : ALL, it follows that (D̄, τ̄, v, 0) |= φ, which is a contradiction. Hence,
(D̄′, τ̄′, v, 0) 6|= φ and φ has (I2).

2. We first show that � φ has (I1). Suppose that φ has the property ONE and that (D̄, τ̄, v, 0) |=
� φ for some valuation v. Then (D̄, τ̄, v, i) |= φ for all time points i ∈ N. Since φ has the
property ONE, it follows that (D̄′, τ̄′, v, i′) |= φ for all corresponding time points i′ ∈ N.
Hence (D̄′, τ̄′, v, 0) |= � φ and � φ has (I1).

We continue to show that � φ has also (I2). Suppose that φ has the property ONE and that
(D̄, τ̄, v, 0) 6|= � φ for some valuation v. Then (D̄, τ̄, v, i) 6|= φ for some time point i ∈ N.

To achieve a contradiction, suppose that (D̄′, τ̄′, v, i′) |= φ, where i′ is the time point
corresponding to i. But from this and φ : ONE it follows that (D̄, τ̄, v, i) |= φ, which is a
contradiction. Hence, (D̄′, τ̄′, v, i′) 6|= φ, so that (D̄′, τ̄′, v, 0) 6|= � φ and � φ has (I2).

�

Theorem 3.3.8. Let φ be a formula.

1. If φ is labeled ALL, then φ is interleaving-sufficient.

2. If φ is labeled ONE, then � φ is interleaving-sufficient.

Moreover, we can determine in linear time in the formula’s length whether φ can be labeled
by ONE or ALL.

Proof. The implications in Theorem 3.3.8 follow directly from the correctness of the labeling
rules (Lemma 3.3.6) and from Lemma 3.3.7.

Next, now prove that a formula φ can be labeled in time linear in its length. We start with
some definitions and then present a simple labeling algorithm and analyze its complexity.

For a formula φ, we define its immediate subformulas isub(φ) to be: (i) {ψ} if φ = ¬ψ,
φ = ∃x. ψ, φ =  I ψ, or φ = #I ψ; (ii) {ψ, χ} if φ = ψ ∧ χ, φ = ψ SI χ, or φ = ψ UI χ; and
(iii) ∅ otherwise. For a rule r, we denote `(r) the label of the rule’s conclusion.

We assume that the data structure used to represent formulas is a tree corresponding to the
formula’s syntax tree and that each node in the tree also stores two bits to represent the two
different labels. Initially these bits are set to 0, meaning that no label is associated with the
corresponding subformula.

1 add labels(φ)
2 foreach ψ ∈ isub(φ)
3 add labels(ψ)
4 foreach rule r
5 if matches(φ, r) then
6 add label(φ, `(r))

The function matches(φ, r) checks if the formula φ pattern matches a rule r. The order of
rules is arbitrary, with the exception that the weakening rules are checked last. So, for instance
if φ received label ALL, then φ will match the appropriate weakening rule and it will also
be labeled with ONE. For each rule, at most the first four levels of the tree representing the
formula φ need to be inspected. For example, after unfolding syntactic sugar in the rule for the
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3 Monitoring Concurrently Logged Actions

formula �I �J φ, the formula becomes (∃x. x ≈ x) SI (∃y. y ≈ y UI φ). As rules have constant
size, we conclude that the function executes in constant time.

The function add label(φ, `) simply adds the label ` to φ. Clearly, this operation can be
performed in constant time.

Note that the execution of the lines 2 and 4–6 takes constant time: |isub(φ)| ≤ 2 for any φ,
there is a fixed, constant number of rules, and the functions matches and add label execute in
constant time. Furthermore, the function add labels is executed once for each subformula of
φ. Hence the whole labeling procedure of φ takes time linear in the length of φ. �

Example 3.3.9. We illustrate our algorithm by applying it to the formula �∀x. publish(x)→
�[0,11) approve(x). We first remove some syntactic sugar and obtain the formula
�∀x.¬publish(x) ∨ �[0,11) approve(x). We start by labeling the atomic subformulas. Both
publish(x) and approve(x) are labeled with ONE. Hence, the subformula ¬publish(x) is
also labeled with ONE. However, we cannot propagate the label ONE to the subformula
�[0,11) approve(x) because the interval of the operator � includes 0. We therefore cannot prop-

agate any labels to the subformulas ¬publish(x) ∨ �[0,11) approve(x) and ∀x.¬publish(x) ∨
�[0,11) approve(x). We conclude that the formula �∀x.¬publish(x)∨ �[0,11) approve(x) is not

in the interleaving-sufficient fragment. It is not even interleaving-sufficient, as explained in
Example 3.3.2.

The formula �∀x. publish(x)→ �[1,11) approve(x) is interleaving-sufficient. The labeling
starts similarly but �[1,11) approve(x) can be labeled with ALL since the interval of the
temporal operator does not contain 0. This label is weakened to ONE and propagates
to the formula ∀x.¬publish(x) ∨ �[1,11) approve(x). We conclude that �∀x.¬publish(x) ∨
�[1,11) approve(x) is interleaving-sufficient.

Note that the defined fragment is sound, but incomplete. In particular, the converse of
statements 1 and 2 in Theorem 3.3.8 is false. For example, the formula �∀x. publish(x) →
( �[0,1) approve(x)) ∨ �[0,11) approve(x) is interleaving-sufficient, but cannot be labeled as
required by Theorem 3.3.8. However, the semantically equivalent formula �∀x. publish(x)→
�[0,1) �[0,11) approve(x) is recognized as interleaving-sufficient by the rules in Figure 3.2. We

could enlarge the fragment by adding rules that handle this particular formula. However, since
it is undecidable whether a formula is interleaving-sufficient (Theorem 3.3.4) we cannot make
the syntactically-defined fragment decidable, sound, and complete.

3.4 Monitoring the Collapse

In this section we describe a collapse-sufficient fragment. Intuitively, collapse-sufficient for-
mulas are those formulas that do not yield false positives and false negatives when monitoring
the collapse of an interleaving:

Definition 3.4.1. Let φ be a formula. For k ∈ {1, 2}, we say that φ has the property (Ck) if
(C̄, κ̄) fulfills the condition (Sk) in Definition 3.2.1 with respect to φ and (D̄, τ̄) ./ (D̄′, τ̄′), for
every (D̄, τ̄), (D̄′, τ̄′), and (C̄, κ̄), where (C̄, κ̄) is the collapse of an interleaving of (D̄, τ̄) and
(D̄′, τ̄′). Moreover, φ is collapse-sufficient if it has the properties (C1) and (C2).

Monitoring the collapse with respect to a collapse-sufficient formula is correct for strong
violations. Since strong violations are trivially also weak violations, we detect some weak
violations as well. However, we may miss violations that are weak, but not strong.
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Note that the formula from the example in Section 2.2 is not collapse-sufficient, but the
weaker and stronger formulas from Example 3.3.2 are collapse-sufficient. Also note that
stutter-invariance [Lam83] is a necessary condition for collapse-sufficiency. However, it is not
a sufficient condition. For example, the formula �∀x. p(x) ∧ q(x) is stuttering-invariant but
not collapse-sufficient.

As with interleaving-sufficient formulas, it is undecidable whether a formula is collapse-
sufficient, as stated in Theorem 3.4.2.

Theorem 3.4.2. Given an MFOTL formula φ, it is undecidable whether φ is collapse-sufficient.

The proof of Theorem 3.4.2 is analogous to the proof of Theorem 3.3.4 (the interleaving-
sufficient case), but we consider the formula φ ∧ �∃x .p(x). We omit the proof.

Our collapse-sufficient fragment is, similar to the interleaving-sufficient fragment in Sec-
tion 3.3, defined by a labeling algorithm. The labels represent properties, which capture the
relation between violations found in a collapsed temporal structure at some time point and
violations found in pre-images of the collapsing at a time point with an equal timestamp. We
formally state these properties in the following definition.

Definition 3.4.3. Let (C̄, κ̄) be a collapsed temporal structure and let col−1(C̄, κ̄) denote the
pre-images of collapsing, that is, the set of temporal structures (D̄, τ̄) with col(D̄, τ̄) = (C̄, κ̄).

– The formula φ has the property (|=∀) when the following holds: For all valuations v and all
i ∈ N, if (C̄, κ̄, v, i) |= φ then for every (D̄, τ̄) ∈ col−1(C̄, κ̄) and every j ∈ N with κi = τ j, it
holds that (D̄, τ̄, v, j) |= φ.

– The formula φ has the property (|=∃) when the following holds: For all valuations v and all
i ∈ N, if (C̄, κ̄, v, i) |= φ then for every (D̄, τ̄) ∈ col−1(C̄, κ̄), there is some j ∈ N with κi = τ j

such that (D̄, τ̄, v, j) |= φ.

– The formula φ has the property (6|=∀) when the following holds: For all valuations v and all
i ∈ N, if (C̄, κ̄, v, i) 6|= φ then for every (D̄, τ̄) ∈ col−1(C̄, κ̄) and every j ∈ N with κi = τ j, it
holds that (D̄, τ̄, v, j) 6|= φ.

– The formula φ has the property (6|=∃) when the following holds: For all valuations v and all
i ∈ N, if (C̄, κ̄, v, i) 6|= φ then for every (D̄, τ̄) ∈ col−1(C̄, κ̄), there is some j ∈ N with κi = τ j

such that (D̄, τ̄, v, j) 6|= φ.

The first symbol (|= or 6|=) in a property indicates whether the formula is satisfied in the
collapsed temporal structure (C̄, κ̄). The second symbol (∃ or ∀) states whether the formula is
satisfied at all equally timestamped time points or at some equally timestamped time point in
all temporal structures (D̄, τ̄) ∈ col−1(C̄, κ̄).

Again, we overload notation and identify each label with its corresponding property. Fig-
ure 3.3 lists the labeling rules. In addition, Figure 3.4 lists rules for the Boolean operator ∧,
the quantifier ∀, and the temporal operators trigger TI and release RI . These rules are used
for formulas in positive normal form, which we require in Section 3.5. Recall that formulas
in this normal form are obtained by pushing negation inside until it appears only in front of
atomic formulas. When considering these formulas, the operators ∧, ∀, TI , and RI are seen
as primitives, instead of being defined as syntactic sugar. We recall that ψ TI χ abbreviates
¬(¬ψ SI ¬χ) and ψ RI χ abbreviates ¬(¬ψ UI ¬χ).
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3 Monitoring Concurrently Logged Actions

φ : (|=∀)
φ : (|=∃)

φ : (6|=∀)
φ : (6|=∃)

t ≈ t′ : (|=∀) t ≈ t′ : (6|=∀) t ≺ t′ : (|=∀) t ≺ t′ : (6|=∀)

r(t1, . . . , tι(r)) : (|=∃) r(t1, . . . , tι(r)) : (6|=∀)

ψ : (|=∃)
¬ψ : (6|=∃)

ψ : (|=∀)
¬ψ : (6|=∀)

ψ : (6|=∃)
¬ψ : (|=∃)

ψ : (6|=∀)
¬ψ : (|=∀)

ψ : (6|=∀) χ : (6|=∀)
ψ ∨ χ : (6|=∀)

ψ : (6|=∀) χ : (6|=∃)
ψ ∨ χ : (6|=∃)

ψ : (|=∀) χ : (|=∀)
ψ ∨ χ : (|=∀)

ψ : (|=∃) χ : (|=∃)
ψ ∨ χ : (|=∃)

ψ : (|=∀)
∃x. ψ : (|=∀)

ψ : (|=∃)
∃x. ψ : (|=∃)

ψ : (6|=∀)
∃x. ψ : (6|=∀)

ψ : (6|=∃)
∃x. ψ : (6|=∃)

ψ : (|=∀) χ : (|=∀)
ψ SI χ : (|=∀)

ψ : (6|=∀) χ : (6|=∀)
ψ SI χ : (6|=∀)

ψ : (6|=∃) χ : (6|=∀)
ψ SI χ : (6|=∃)

ψ : (|=∀) χ : (|=∀)
ψ UI χ : (|=∀)

ψ : (6|=∀) χ : (6|=∀)
ψ UI χ : (6|=∀)

ψ : (6|=∃) χ : (6|=∀)
ψ UI χ : (6|=∃)

ψ : (6|=∃) χ : (6|=∀)
(ψ SI χ) ∧ (�J ψ) : (6|=∀)

0 < I, 0 ∈ J
ψ : (6|=∃) χ : (6|=∀)

(ψ UI χ) ∧ (�J ψ) : ( 6|=∀)
0 < I, 0 ∈ J

ψ : (|=∃)
�I ψ : (|=∃)

ψ : (|=∃)
�I ψ : (|=∀) 0 < I

ψ : (|=∃)
�I ψ : (|=∃)

ψ : (|=∃)
�I ψ : (|=∀) 0 < I

ψ : (|=∃)
�I �J ψ : (|=∀) 0 ∈ I ∩ J

ψ : (|=∃)
�I �J ψ : (|=∀) 0 ∈ I ∩ J

Figure 3.3: Labeling Rules (Collapse)
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ψ : (|=∀) χ : (|=∀)
ψ ∧ χ : (|=∀)

ψ : (|=∀) χ : (|=∃)
ψ ∧ χ : (|=∃)

ψ : (6|=∀) χ : (6|=∀)
ψ ∧ χ : (6|=∀)

ψ : (6|=∃) χ : (6|=∃)
ψ ∧ χ : (6|=∃)

ψ : (|=∀)
∀x. ψ : (|=∀)

ψ : (|=∃)
∀x. ψ : (|=∃)

ψ : (6|=∀)
∀x. ψ : (6|=∀)

ψ : (6|=∃)
∀x. ψ : (6|=∃)

ψ : (6|=∀) χ : (6|=∀)
ψ TI χ : (6|=∀)

ψ : (|=∀) χ : (|=∀)
ψ TI χ : (|=∀)

ψ : (|=∃) χ : (|=∀)
ψ TI χ : (|=∃)

ψ : (|=∃) χ : (|=∀)
(ψ TI χ) ∨ ( �J ψ) : (|=∀)

0 < I, 0 ∈ J

ψ : (6|=∀) χ : (6|=∀)
ψ RI χ : (6|=∀)

ψ : (|=∀) χ : (|=∀)
ψ RI χ : (|=∀)

ψ : (|=∃) χ : (|=∀)
ψ RI χ : (|=∃)

ψ : (|=∃) χ : (|=∀)
(ψ RI χ) ∨ ( �J ψ) : (|=∀)

0 < I, 0 ∈ J

Figure 3.4: Labeling Rules for Formulas in Positive Normal Form

Lemma 3.4.4. Let φ be a formula. If φ can be labeled with `, then φ has the property `,
where ` ∈

{
(|=∀), (6|=∀), (|=∃), (6|=∃)

}
.

Lemma 3.4.4 shows the soundness of our labeling rules. Before we formally show its
correctness, we intuitively explain the most representative rules. The first two rules in
Figure 3.3 express that the properties corresponding to the labels (|=∀) and ( 6|=∀) imply the
properties corresponding to (|=∃) and (6|=∃), respectively.

The next two lines in Figure 3.3 are rules for atomic formulas. An atomic formula t ≈ t′ or
t ≺ t′ depends only on the valuation and therefore can be labeled (|=∀) and (6|=∀). An atomic
formula of the form r(t1, . . . , tι(r)) can be labeled (|=∃) and ( 6|=∀). We only explain the labeling
(|=∃). The explanation for the label ( 6|=∀) is analogous. The interpretation of a predicate
symbol in a collapsed temporal structure (C̄, κ̄) at a time point i is the union of the predicate
symbol’s interpretations at all time points j in a temporal structure (D̄, τ̄) ∈ col−1(C̄, κ̄) for
which τ j equals κi. Therefore, if ā ∈ rCi then ā ∈ rD j , for some j ∈ N with τ j = κi. Note that
ā ∈ rD j does not necessarily hold for all of these js; hence, we cannot label r(t1, . . . , tι(r)) with
(|=∀).

We next consider the labeling rules for the temporal operator SI . To ease our explanation,
we just consider the special case �I ψ = true SI ψ. We first justify the rule that propagates the
label (|=∀) from ψ to �I ψ. It is not shown in Figure 3.3, but can be derived from the rule for
the operator SI after unfolding the syntactic sugar �I φ, by observing that true, which unfolds
to ∃x. x ≈ x, can be labeled with (|=∀). If �I ψ is satisfied in the collapsed temporal structure
(C̄, κ̄) at time point i then ψ is satisfied at some previous time point j ≤ i in (C̄, κ̄) with κi−κ j ∈ I.
Because ψ is labeled with (|=∀), all time points with timestamp κ j in the temporal structure
(D̄, τ̄) ∈ col−1(C̄, κ̄) also satisfy ψ, and hence, all time points with timestamp κi satisfy �I ψ in
(D̄, τ̄). When ψ is labeled with (|=∃), possibly only a single time point k in (D̄, τ̄) with τk = κ j
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satisfies ψ. If 0 ∈ I then �I ψ might not be satisfied at time points before k, even if these time
points have the timestamp κi. So, we can label �I with (|=∃) but not with (|=∀). However, if
0 < I then ψ is satisfied in (C̄, κ̄) at a time point j with the timestamp κ j < κi. Hence �I ψ is
satisfied in (D̄, τ̄) at all time points with the timestamp κi. This allows us to label �I ψ with
(|=∀). Finally, when ψ is labeled ( 6|=∀), then �I ψ can also be labeled with (6|=∀). This rule is
not shown in Figure 3.3, but it can be derived from the rule for the operator SI , like the rule for
the label (|=∀). If �I ψ is violated in the collapsed temporal structure (C̄, κ̄) at timestamp κi,
then ψ is violated at all previous points in the temporal structure (D̄, τ̄) ∈ col−1(C̄, κ̄) that
satisfy the metric constraints given by I. But then �I ψ is also violated in (D̄, τ̄) at all time
points with the timestamp κi. Hence we can label �I ψ with ( 6|=∀).

We can try to label a formula solely based on labeling rules that involve only a single
Boolean or temporal operator. However, with additional specialized labeling rules like the one
for �I �J ψ, we are more likely to succeed in propagating labels to the root of the formula.
Intuitively, with the nesting of the operators �I and �J , and when 0 ∈ I ∩ J, the ordering of
equally timestamped time points becomes irrelevant since from a given time point, we can
freely choose any of the time points that satisfy the metric constraints given by the intervals I
and J. Hence, a labeling (|=∃) for ψ allows us to label �I �J ψ with (|=∀).

Proof. We first show the correctness of the labeling rules from Figure 3.3. We proceed by
induction on the size of the derivation tree assigning label ` to φ. We make a case distinction
based on the rule applied to label the formula, that is, the rule at the tree’s root. However, for
clarity, we generally group cases by the formula’s form.

Let (C̄, κ̄) be the collapse of an interleaving of two given temporal structures. For readability,
and without loss of generality, we already fix an arbitrary valuation v, an arbitrary time point i,
and an arbitrary temporal structure (D̄, τ̄) ∈ col−1(C̄, κ̄).

We first consider the weakening rules:

• φ is labeled with (|=∀) and (|=∃). Suppose that (C̄, κ̄, v, i) |= φ. By the induction
hypothesis, φ has the property (|=∀), thus (D̄, τ̄, v, j) |= φ for any j with τ j = κi. By the
definition of (C̄, κ̄), there is at least one j with τ j = κi. Hence φ has the property (|=∃).

• φ is labeled with ( 6|=∀) and with ( 6|=∃). This case is analogous to the previous one.

Next, we make a case distinction on the form of the formula. Consider formulas of the
form:

• φ = t ≈ t′, where t and t′ are variables or constants. In this case φ is labeled with (|=∀)
and ( 6|=∀).

– φ is labeled with (|=∀). Suppose that (C̄, κ̄, v, i) |= φ. Then v(t) = v(t′). Clearly,
(D̄, τ̄, v, j) |= φ for any time point j, as φ only depends on the valuation. The
property (|=∀) is hence satisfied.

– φ is labeled with ( 6|=∀). This case is analogous to the previous one.

• φ = t ≺ t′, where t and t′ are variables or constants. This case is analogous to the
previous one.

• φ = r(t1, . . . , tι(r)), where t1, . . . , tι(r) are variables or constants. In this case φ is labeled
with (|=∃) and ( 6|=∀).
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– φ is labeled with (|=∃). Suppose that (C̄, κ̄, v, i) |= φ. Then (v(t1), . . . , v(tι(r))) ∈ rCi .
As rCi =

⋃
{ j|τ j=κi} r

D j , there is a j with τ j = κi such that (v(t1), . . . , v(tι(r))) ∈ rD j .
Therefore (D̄, τ̄, v, j) |= φ. Thus φ has the property (|=∃).

– φ is labeled with (6|=∀). Suppose that (C̄, κ̄, v, i) 6|= φ. Then for any j with τ j = κi

we have that (v(t1), . . . , v(tι(r))) < rD j , that is, (D̄, τ̄, v, j) 6|= φ. Thus φ has the
property (6|=∀).

• φ = ¬ψ. If ψ is labeled with `, then φ is labeled with ¬`, where ¬` is (|=∀), ( 6|=∀), ( 6|=∃),
or (|=∃) when ` is (6|=∀), (|=∀), (|=∃), or ( 6|=∃), respectively.

– φ is labeled with (|=∀). Suppose that (C̄, κ̄, v, i) |= ¬ψ. By the induction hypothesis,
ψ has the property ( 6|=∀). As (C̄, κ̄, v, i) 6|= ψ, we have that (D̄, τ̄, v, k) 6|= ψ, that is,
(D̄, τ̄, v, k) |= φ, for all k with τk = κi. Thus φ has the property (|=∀).

– The other cases are similar.

• φ = ψ ∨ χ. There are four rules to be analyzed.

– φ, ψ, and χ are labeled with ( 6|=∀). Suppose that (C̄, κ̄, v, i) 6|= ψ ∨ χ. Then
(C̄, κ̄, v, i) 6|= ψ and (C̄, κ̄, v, i) 6|= χ. By the induction hypothesis, ψ and χ have
the property (6|=∀). Hence, for all j with τ j = κi, we have (D̄, τ̄, v, j) 6|= ψ and
(D̄, τ̄, v, j) 6|= χ. Thus (D̄, τ̄, v, j) 6|= φ for all j with τ j = κi. Hence, φ has the
property (6|=∀).

– The other cases are similar.

• φ = ∃x.ψ. There are four rules, one for each label: if ψ is labeled with `, then φ is
labeled with `.

– ` is (|=∀). Suppose that (C̄, κ̄, v, i) |= ∃x.ψ. Then there is a d ∈ |D̄| such that
(C̄, κ̄, v[x 7→d], i) |= ψ. As ψ has the property (|=∀), we have (D̄, τ̄, v[x 7→d], j) |=
ψ for all j with τ j = κi. That is, (D̄, τ̄, v, j) |= ∃x.ψ for all j with τ j = κi. Hence φ
has the property (|=∀).

– The other cases are similar.

• φ = ψ SI χ. We have three rules to analyze.

– φ, ψ, and χ are each labeled with (|=∀). By the induction hypothesis, ψ and χ
have the property (|=∀). Suppose that (C̄, κ̄, v, i) |= φ. Then, for some j ≤ i with
κi − κ j ∈ I, we have (C̄, κ̄, v, j) |= χ and (C̄, κ̄, v, k) |= ψ for all k ∈ [ j + 1, i + 1). Let
i′ be an arbitrary time point such that τi′ = κi. As χ has the property (|=∀), for the
largest j′ with τ j′ = κ j we have (D̄, τ̄, v, j′) |= χ. Clearly, τi′ − τ j′ ∈ I. From the
definition of (C̄, κ̄), for any k′ ∈ [ j′ + 1, i′ + 1), there is a k ∈ [ j + 1, i + 1) such
that τk′ = κk. Then, as ψ has the property (|=∀), for any k′ ∈ [ j′ + 1, i′ + 1), we
have (D̄, τ̄, v, k′) |= ψ. As ψ has the property (|=∀), for all k ∈ [ j + 1, i + 1) and all
k′ with τk′ = κk, we have (D̄, τ̄, v, k′) |= ψ. Hence (D̄, τ̄, v, i′) |= ψ SI χ, and thus φ
has the property (|=∀).

– φ, ψ, and χ are each labeled with ( 6|=∀). By the induction hypothesis, ψ and χ
have the property ( 6|=∀). Suppose that (C̄, κ̄, v, i) 6|= φ. Furthermore, to achieve a
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contradiction, suppose that φ does not have the property (6|=∀). That is, there is an
i′ with τi′ = κi such that (D̄, τ̄, v, i′) |= φ. Then there is a j′ ≤ i′ with τi′ − τ j′ ∈ I
such that (D̄, τ̄, v, j′) |= χ and for all k′ ∈ [ j′ + 1, i′ + 1) we have (D̄, τ̄, v, k) |= ψ.
By the definition of (C̄, κ̄), there is a j with κ j = τ j′ . As χ has the property
( 6|=∀), we have that (C̄, κ̄, v, j) |= χ. Similarly, we have that (C̄, κ̄, v, k) |= ψ for all
k ∈ [ j + 1, i + 1). That is, (C̄, κ̄, v, i) |= φ, which is a contradiction.

– φ and ψ are labeled with ( 6|=∃), and χ is labeled by ( 6|=∀). By the induction
hypothesis, ψ and χ have the properties ( 6|=∃) and ( 6|=∀), respectively. As before,
suppose that (C̄, κ̄, v, i) 6|= φ. Furthermore, to achieve a contradiction, suppose
that φ does not have the property ( 6|=∃). That is, for all i′ with τi′ = κi we
have (D̄, τ̄, v, i′) |= φ. Consider the largest such i′. Then there is a j′ ≤ i′ with
τi′ − τ j′ ∈ I such that (D̄, τ̄, v, j′) |= χ and for all k′ ∈ [ j′ + 1, i′ + 1) we have
(D̄, τ̄, v, k′) |= ψ. By the definition of (C̄, κ̄), there is a j with κ j = τ j′ . As χ has the
property (6|=∀), we have that (C̄, κ̄, v, j) |= χ. Take k ∈ [ j + 1, i + 1) arbitrarily. If
(C̄, κ̄, v, k) 6|= ψ, as ψ has the property ( 6|=∃), then there is a k′ with τk′ = κk such
that (D̄, τ̄, v, k′) 6|= ψ. This contradicts our assumption that (D̄, τ̄, v, i′) |= φ, since
k′ must be in the interval [ j′ + 1, i′ + 1). We thus have that (C̄, κ̄, v, k) |= ψ for all
k ∈ [ j + 1, i + 1). Hence (C̄, κ̄, v, i) |= φ, which is a contradiction.

• φ = ψ UI χ. This case is analogous to the previous one.

• φ = (ψ SI χ) ∧ (�J ψ) with 0 < I and 0 ∈ J. φ and χ are labeled with ( 6|=∀), and ψ is
labeled by ( 6|=∃). By the induction hypothesis, ψ and χ have the properties ( 6|=∃) and
( 6|=∀), respectively. Suppose that (C̄, κ̄, v, i) 6|= φ. Furthermore, to achieve a contradiction,
suppose that φ does not have the property ( 6|=∀). That is, there is an i′ with τi′ = κi such
that (D̄, τ̄, v, i′) |= φ. Then there is a j′ ≤ i′ with τi′ − τ j′ ∈ I such that (D̄, τ̄, v, j′) |= χ

and for all k′ ∈ [ j′ + 1, i′ + 1) we have (D̄, τ̄, v, k′) |= ψ; and for all j′′ ≥ i′ with
τ j′′ − τi′ ∈ J we have (D̄, τ̄, v, j′′) |= ψ.

By the definition of (C̄, κ̄), there is a j with κ j = τ j′ . As χ has the property ( 6|=∀), we
have that (C̄, κ̄, v, j) |= χ. Take k ∈ [ j + 1, i) arbitrarily. If (C̄, κ̄, v, k) 6|= ψ, as ψ has
the property ( 6|=∃), then there is a k′ with τk′ = κk such that (D̄, τ̄, v, k′) 6|= ψ. This
contradicts our assumption that (D̄, τ̄, v, i′) |= φ. Indeed, k′ must be in the interval
[ j′ + 1, i′′ + 1), where i′′ is the largest time point such that τi′′ = κi. If k′ ≤ i′ then
(D̄, τ̄, v, i′) 6|= ψ SI χ. If k′ > i′ then (D̄, τ̄, v, i′) 6|= �J ψ, as 0 ∈ J. We thus have that
(C̄, κ̄, v, k) |= ψ for all k ∈ [ j + 1, i + 1). Hence (C̄, κ̄, v, i) |= ψ SI χ.

As (D̄, τ̄, v, i′) |= �J ψ and 0 ∈ J, it follows that for all k′ ≥ i′ with τk′ = τi′ we
have (D̄, τ̄, v, k′) |= ψ. We have seen that (D̄, τ̄, v, k′) |= ψ for all k′ ∈ [ j′ + 1, i′ + 1).
Because τ j′ < τi′ (as 0 < I), it also follows that for all k′ ≤ i′ with τk′ = τi′ we have
(D̄, τ̄, v, k′) |= ψ. Hence (D̄, τ̄, v, k′) |= ψ for all k′ with τk′ = τi′ . As ψ has the property
( 6|=∃), we obtain that (C̄, κ̄, v, i) |= ψ. Similarly, we obtain that (C̄, κ̄, v, k) |= ψ for all
k > i such that κk − κi ∈ J. Hence (C̄, κ̄, v, i) |= �J ψ.

We showed that (C̄, κ̄, v, i) |= φ, which is a contradiction. Thus φ has the property ( 6|=∀).

• φ = (ψ UI χ) ∧ (�J ψ) with 0 < I and 0 ∈ J. This case is analogous to the previous one.
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• φ = �I ψ. There are two rules to analyze. For both rules, ψ is labeled with (|=∃).
Suppose that (C̄, κ̄, v, i) |= φ. Then there is a j ≤ i with κi−κ j ∈ I such that (C̄, κ̄, v, j) |= ψ.
As, by the induction hypothesis, ψ has the property (|=∃), there is a j′ with τ j′ = κ j

such that (D̄, τ̄, v, j′) |= ψ.

– φ is labeled with (|=∃). Take i′ to be the largest k such that τk = κi. Clearly,
τi′ − τ j′ ∈ I and j′ ≤ i′. Hence (D̄, τ̄, v, i′) |= �I ψ and φ has the property (|=∃).

– 0 < I and φ is labeled with (|=∀). Take i′ arbitrarily such that τi′ = κi. Clearly,
τi′ − τ j′ ∈ I and, as 0 < I, τi′ − τ j′ > 0, thus j′ < i′. Hence (D̄, τ̄, v, i′) |= �I ψ.
Thus φ has the property (|=∀).

• φ = �I ψ. This case is analogous to the previous one.

• φ = �I �J ψ with 0 ∈ I ∩ J. There is only one rule to consider: ψ is labeled with
(|=∃) and φ is labeled by (|=∀). Suppose that (C̄, κ̄, v, i) |= φ. Then there is a j ≤ i
with κi − κ j ∈ I and there is a k ≥ j with κk − κ j ∈ J such that (C̄, κ̄, v, k) |= ψ. As,
by the induction hypothesis, ψ has the property (|=∃), there is a k′ with τk′ = κk

such that (D̄, τ̄, v, k′) |= ψ. Take i′ arbitrarily such that τi′ = κi. If k′ ≥ i′ then
0 ≤ τk′ − τi′ = κk − κi ≤ κk − κ j ∈ J. As 0 ∈ J, we have τk′ − τi′ ∈ J. Thus
(D̄, τ̄, v, i′) |= �J ψ and, as 0 ∈ I, (D̄, τ̄, v, i′) |= �I �J ψ. The case when k′ < i′ is
similar. Hence φ has the property (|=∀).

We continue to show the soundness of the rules for the Boolean operator ∧, the quantifier
∀, and the temporal operators trigger TI and release RI , shown in Figure 3.4. The soundness
of these rules follows from the soundness of the rules in Figure 3.3 and the mentioned
equivalences. For instance, the correctness of the rule

ψ : (|=∃) χ : (|=∀)
(ψ TI χ) ∨ ( �J ψ) : (|=∀)

0 < I, 0 ∈ J

follows from unfolding the abbreviation (ψ TI χ) ∨ ( �J ψ), which is ¬
(
(¬ψ SI ¬χ) ∧ (�J ¬ψ)

)
,

and the following derivation:

ψ : (|=∃)
¬ψ : (6|=∃)

χ : (|=∀)
¬χ : (6|=∀)

(¬ψ SI ¬χ) ∧ (�J ¬ψ) : (6|=∀)
0 < I, 0 ∈ J

¬
(
(¬ψ SI ¬χ) ∧ (�J ¬ψ)

)
: (|=∀)

�

Based on the labels at a formula’s root, we can determine if the formula has the proper-
ties (C1) and (C2) and hence whether it is collapse-sufficient, as shown in Theorem 3.4.6. In
order to prove Theorem 3.4.6, we first establish a relation between the properties corresponding
to the labels and the properties (I1) and (I2) in Lemma 3.3.7.

Lemma 3.4.5. Let φ be a formula.

1. If φ has the property (|=∀), then φ has property (C1).

2. If φ has the property (6|=∀), then φ has property (C2).
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3. If φ has the property (|=∃), then � φ has property (C1).

4. If φ has the property (6|=∃), then � φ has property (C2).

Proof. We fix a temporal structure (C̄, κ̄).

1. Suppose φ has the property (|=∀) and that (C̄, κ̄, v, 0) |= φ for some valuation v. Then, for
any (D̄, τ̄) ∈ col−1(C̄, κ̄) and every j ∈ N with κ0 = τ j, it holds that (D̄, τ̄, v, j) |= φ. By the
definition of collapsed temporal structure, we have κ0 = τ0. Hence φ has (C1).

2. This case is analogous to the previous one.

3. Suppose φ has the property (|=∃) and that (C̄, κ̄, v, 0) |= � φ for some arbitrary valuation v.
Then (C̄, κ̄, v, i) |= φ for some i ∈ N. Because φ has the property (|=∃), for every (D̄, τ̄) ∈
col−1(C̄, κ̄), there is some j ∈ N with κi = τ j such that (D̄, τ̄, v, j) |= φ. It follows that
(D̄, τ̄, v, 0) |= � φ. Hence � φ has (C1).

4. This case is analogous to the previous one.

�

Based on the correctness of the derivation rules (Lemma 3.4.4) and Lemma 3.4.4, we obtain
the following theorem.

Theorem 3.4.6. If the formula φ can be labeled by (|=∀) and ( 6|=∀), then it is collapse-
sufficient. If φ can be labeled by (|=∀) and ( 6|=∃), then � φ is collapse-sufficient. If φ can be
labeled by (|=∃) and ( 6|=∀), then � φ is collapse-sufficient. Moreover, we can determine in
linear time in the formula’s length whether φ can be labeled by (|=∀), (|=∃), (6|=∀), or (6|=∃).

Proof. The first implications follow directly from Lemma 3.4.4 and Lemma 3.4.5. For the
second implication, note that, based on our labeling rules, the label (|=∀) propagates through
the operator �. For the third implication, note that, based on our labeling rules, the label ( 6|=∀)
propagates through the operator �. The proof for the complexity of the labeling procedure is
analogous to the proof for Theorem 3.3.8. The only difference is in using four bits for the four
different labels instead of using two bits for two labels. �

Note that formulas of the form �ψ are already collapse-sufficient if ψ can be labeled by
( 6|=∃) and �ψ can be labeled by (|=∀). Even if only one of these labellings can be derived,
monitoring �ψ on the collapsed temporal structure of an interleaving is still useful. For
example, if ψ is labeled by (6|=∃) then violations that are found on the collapsed temporal
structure relate to strong violations on the set of interleavings. However, we might miss some
violations.

Example 3.4.7. We illustrate our algorithm by applying it to the formulas from Example 3.3.2.
Unlike in Example 3.3.2, we use the labels (|=∀), (|=∃), ( 6|=∀), and (6|=∃) and the rules shown
in Figure 3.3. First, we consider the formula �∀x.¬publish(x) ∨ �[0,11) approve(x). Both of
its atomic subformulas publish(x) and approve(x) are labeled with (|=∃) and ( 6|=∀). We label
the subformula �[0,11) approve(x) with (|=∃) and (6|=∀). We cannot label it with (|=∀) since
the interval contains 0. The subformula ¬publish(x) is labeled with ( 6|=∃) and (|=∀). The
subformulas ¬publish(x) ∨ �[0,11) approve(x) and ∀x.¬publish(x) ∨ �[0,11) approve(x) are
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labeled (|=∃) and ( 6|=∃). We conclude that the formula �∀x.¬publish(x) ∨ �[0,11) approve(x)
has the property (C2). It does not have the property (C1), as explained in Example 3.3.2.

The formula �∀x. publish(x)→ �[1,11) approve(x) has both properties (C1) and (C2). The
labeling starts similarly but �[1,11) approve(x) is additionally labeled with (|=∀) since the
interval of the temporal operator does not contain 0. This label propagates to the formula’s
root. We conclude that �∀x.¬publish(x) ∨ �[1,11) approve(x) also has property (C1).

As in the interleaving-sufficient case, the defined fragment is incomplete, which is again
witnessed by the formula �∀x. publish(x) → ( �[0,1) approve(x)) ∨ �[0,11) approve(x). It
is collapse-sufficient, but cannot be labeled as required by Theorem 3.4.6. Note that the
semantically equivalent formula �∀x. publish(x)→ �[0,1) �[0,11) approve(x) is recognized as
collapse-sufficient using the rules shown in Figure 3.3.

3.5 Sufficient Fragments

In this section, we compare the interleaving-sufficient and collapse-sufficient fragments and
present a generic recipe that approximates policies to obtain formulas in these fragments.

3.5.1 Comparison

The interleaving-sufficient fragment is larger than the collapse-sufficient fragment. In contrast,
the collapse-sufficient fragment is more efficient to monitor. We explain these two aspects in
more detail.

Intuitively, a collapse-sufficient formula is satisfied either on all pre-images of a collapse or
on none. An interleaving-sufficient formula is satisfied either on all interleavings or on none.
As the set of all interleavings is a strict subset of all collapse pre-images, the interleaving-
sufficient property is a weaker requirement than the collapse-sufficient property. Theorem 3.5.1
shows that a collapse-sufficient formula is indeed always also interleaving-sufficient.

Theorem 3.5.1. If a formula φ is collapse-sufficient then φ is also interleaving-sufficient.

Proof. Suppose that φ is a collapse-sufficient MFOTL formula. Moreover, let (D̄1, τ̄1),
(D̄2, τ̄2), (D̄, τ̄), and (C̄, κ̄) be temporal structures where (D̄, τ̄) ∈ (D̄1, τ̄1) ./ (D̄2, τ̄2) and
(C̄, κ̄) = col(D̄, τ̄). We fix an arbitrary valuation v. There are two cases to consider: either φ is
satisfied on (D̄, τ̄) or it is not.

First, if (D̄, τ̄, v, 0) |= φ, then also (C̄, κ̄, v, 0) |= φ. To see this, suppose that (C̄, κ̄, v, 0) 6|= φ.
As φ has the property (C2), it would follow that (D̄, τ̄, v, 0) 6|= φ, which is a contradiction.
From (C̄, κ̄, v, 0) |= φ and φ having the property (C1), it follows that (D̄′, τ̄′, v, 0) |= φ for all
(D̄′, τ̄′) ∈ (D̄1, τ̄1) ./ (D̄2, τ̄2). Hence, φ has the property (I1).

Second, if (D̄, τ̄, v, 0) 6|= φ, then since φ has the property (C1), it follows that (C̄, κ̄, v, 0) 6|= φ.
Since φ has the property (C2), it follows that (D̄′, τ̄′, v, 0) 6|= φ, for all (D̄′, τ̄′) ∈ (D̄1, τ̄1) ./

(D̄2, τ̄2). Hence, φ has the property (I2).
Since φ has the properties (I1) and (I2), it is interleaving-sufficient. �

The converse does not hold. There are interleaving-sufficient formulas that are not collapse-
sufficient. Intuitively, the interleaving-sufficient formulas allow us to check individual time
points from the original traces, but collapse-sufficient formulas are restricted to checking
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the collapsed time points. For example, the policy requiring that if p happens, then q must
happen at the same time point, formalized as � p → q, is interleaving-sufficient, but not
collapse-sufficient. Inspecting only collapsed time points still allows us to check that an event
never occurs. That is, �¬p is collapse-sufficient. However, � p is interleaving-sufficient but
not collapse-sufficient.

A practical advantage of the collapse-sufficient fragment is that monitoring a collapsed
temporal structure is more efficient than monitoring an interleaving, as our case study described
in Chapter 4 demonstrates. The main reason is that time points with equal timestamps are
merged to a single time point in a collapsed temporal structure. Hence, the monitor processes
the logged actions with equal timestamps in a single invocation.

The structure of the collapsed log can be further exploited to increase monitor performance
by rewriting the monitored formulas. In particular, if we are monitoring the collapsed log,
rather than an interleaving, then we can rewrite formulas of the form �[0,1) φ, �[0,1) φ, �[0,1) φ,
and �[0,1) φ to φ. The reason is that in a collapsed trace, there is at most one time point for
each timestamp. We call the rewritten formulas collapse-optimized.

3.5.2 Policy Approximation

In Example 3.3.2, we have seen that we can obtain an interleaving-sufficient policy by
strengthening or weakening the original policy. We now generalize this observation.

Let φ be a formula in positive normal form. That is, negations in φ are pushed inside and
occur only in front of atomic formulas. We obtain a weakened formula φw by replacing each
atomic subformula r(t1, . . . , tι(r)) that occurs positively in φ by �I �I′ r(t1, . . . , tι(r)), for some
intervals I and I′ with 0 ∈ I ∩ I′. Analogously, in a strengthened formula φs, we replace each
negative occurrence of an atomic subformula r(t1, . . . , tι(r)) by �I �I′ r(t1, . . . , tι(r)) for some
intervals I, I′.

Theorem 3.5.2. Let φw and φs be weakened and strengthened formulas of the formula φ in
positive normal form. The formulas φ→ φw and φs → φ are valid. Moreover,

1. if φs is collapse-sufficient then φ has property (C1), and

2. if φw is collapse-sufficient then φ has property (C2).

Proof. We first show that φw is weaker than φ, or more precisely, that the formula φ→ φw is
valid. We proceed by structural induction on φ.

• φ = t ≈ t′, φ = t ≺ t′, φ = ¬(t ≈ t′), φ = ¬(t ≺ t′), or ¬r(t1, . . . , tι(r)), where t, t′, and
ti with 1 ≤ i ≤ ι(r) are variables or constants. Then φw = φ, and the statement clearly
holds.

• φ = r(t1, . . . , tι(r)). Then φw = �J �J′ r(t1, . . . , tι(r)), for some intervals J and J′ with
0 ∈ J ∩ J′. Let (D̄, τ̄) be a temporal structure, v a valuation, and i a time point. Suppose
that (D̄, τ̄, v, i) |= φ. As 0 ∈ I ∩ J, we clearly have (D̄, τ̄, v, i) |= �J �J′ φ, that is,
(D̄, τ̄, v, i) |= φ′.

• φ = ψ ∧ χ, φ = ∃x. ψ, φ =  I ψ, φ = #I ψ, φ = ψ SI χ, or φ = ψ UI χ. These cases
follow directly from the induction hypotheses. We only present the case φ = ψ SI χ.
We have φw = ψw SI χ

w. Let (D̄, τ̄) be a temporal structure, v a valuation, and i a
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time point. Suppose that (D̄, τ̄, v, i) |= φ. Then there is a j ≤ i with τi − τ j ∈ I such
that (D̄, τ̄, v, j) |= χ and (D̄, τ̄, v, k) |= ψ for any k ∈ [i + 1, j + 1). Using the induction
hypotheses for ψ and χ, we obtain that (D̄, τ̄, v, j) |= χw and (D̄, τ̄, v, k) |= ψw for any
k ∈ [i + 1, j + 1). Hence (D̄, τ̄, v, i) |= φw.

The proof of the dual case, that is, that the formula φs → φ is valid, is similar. It is based
on the remark that the formula

(
¬ �J �J′ r(t1, . . . , tι(r))

)
→ ¬r(t1, . . . , tι(r)) is valid.

Finally, we prove Statement (1). Statement (2) is similar. Let (C̄, κ̄) be the collapse of
two temporal structures (D̄1, τ̄1) and (D̄2, τ̄2). Suppose that φs is collapse-sufficient and
that (C̄, κ̄, v, 0) |= φs, for some arbitrary valuation v. It follows that (D̄, τ̄, v, 0) |= φs for
any (D̄, τ̄) ∈ (D̄1, τ̄1) ./ (D̄2, τ̄2). As φs → φ is valid, we have that (D̄, τ̄, v, 0) |= φ, for any
(D̄, τ̄) ∈ (D̄1, τ̄1) ./ (D̄2, τ̄2). �

Weakened and strengthened formulas are more likely to be collapse-sufficient, since their
subformulas of the form �I �I′ r(t1, . . . , tι(r)) can be labeled with (|=∀), while r(t1, . . . , tι(r))
can only be labeled with the weaker label (|=∃). Simultaneously weakening and strengthening
always results in a collapse-sufficient formula. However, the resulting formula does not
necessarily relate to the original formula.

Since a collapse-sufficient formula is also interleaving-sufficient (Theorem 3.5.1), the above
rewriting can also be used when an interleaving-sufficient formula is desired.

Note that by inserting the temporal operators �[0,1) and �[0,1) around positively occurring
atomic subformulas, the ordering of equally timestamped actions becomes irrelevant. This is
desirable in systems where the clocks used to timestamp the actions are synchronized but too
coarse-grained to capture the relative ordering of events occurring almost concurrently. Taking
this idea further, by putting temporal operators �[0,b) and �[0,b) around these subformulas
with b ≥ 1, we take into account that the timestamps in a temporal structure are inaccurate
and might differ from their actual value by the threshold b—a situation that occurs in practice.
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In this chapter, we describe the deployment of our approach to monitoring concurrently
logged actions within Nokia’s Data-collection Campaign [AN10, KBD+10, LGPA+12], which
is a real-world application with realistic data-usage policies. Furthermore, we report on the
monitor’s performance and our findings.

4.1 Nokia’s Data-collection Campaign

Scenario. The campaign collects contextual information from cell phones of about 180
participants. This sensitive data includes phone locations, call and SMS information, and
the like. The data collected by a participant’s phone is propagated into the databases db1,
db2, and db3. The phones use WLAN to periodically upload their data to database db1.
Every night, the synchronization script script1 copies the data from db1 to db2. Furthermore,
triggers running on db2 anonymize and copy the data to db3, where researchers can access
and analyze the anonymized data. The participants can access and delete their own data using
a web interface to db1. Deletions are propagated to all databases: from db1 to db2 by the
synchronization script script2, which also runs every night, and from db2 to db3 by database
triggers. Figure 4.1 summarizes the various data usages.

Within the campaign, data is organized by records and can easily be identified. When
uploading data from a phone into db1, a unique identifier is generated for each record. This
identifier, together with an identifier of the participant who contributed the data, is attached to
the record.

Policies. The collected data is subject to various policies that protect the participants’
privacy. For example, there are access-control policies and policies governing the process of
propagating the data between databases. In particular, insertions and deletions of data must be
propagated within a given time limit. Furthermore, the latest version of the synchronization
scripts must be used and their running times are restricted. Finally, access to the databases is
restricted to selected user accounts and the account used by the script script1 may be used
only while the script is running.

We now describe these policies in more detail and present their formalization in MFOTL.
We start with the predicate symbols used for formalizing the policies. We represent system
actions as elements in relations interpreting the predicate symbols at the time points. The
elements of the relations for the predicate symbols select, insert, delete, and update correspond
to database operations with equally-named SQL commands. The parameters are the user
executing the operation, the name of the database, and an identifier of the involved data. The
predicate symbols start and stop indicate the starting and finishing of a synchronization script
and include the script’s name. After the script script1 starts, it logs additional details about
its SVN status using the predicate symbol svn. The parameters are the script’s name, its
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Figure 4.1: Nokia’s Data-collection Campaign

SVN status determined by the command svn status -u -v, the SVN URL, and the SVN
revision number. When the script is the latest version, we use the value latest for the SVN
status. The predicate symbol commit represents committing a new script version into the
subversion repository. The parameters are the SVN URL and revision number.

The MFOTL formalization of the policies uses the predicate symbols just described. The
formulas are shown in Table 4.1. In the following, we informally state the detailed policies in
natural language and for the more involved policies, we provide additional explanations:

– delete: Only user script2, representing the synchronization script script2, may delete data
in db2 by executing the SQL delete command.

– insert: Only user script1, representing the synchronization script script1, may insert data in
db2 by executing the SQL insert command.

– select: Only a limited set of users, namely script1, script2, and triggers, may read data
from db2 by executing the SQL select command.

– update: No SQL update commands are allowed in db2.

– script1: Database operations may be executed under the user account script1 only while the
script script1 is running. The motivation for this policy is that the account script1 should
only be used by the script, so if the account is used while the script is not running, the
account may have been compromised. The database operation can happen while the script
is running, including when the script starts or finishes. That is, the time points when an
operation happens and when the script starts or ends may have equal timestamps. The
semantics of the S operator includes the script start, but excludes the script end. Therefore,
the script end is allowed with the additional disjunct at the end of the formula.

– runtime: The synchronization scripts must run for at least 1 second and for no longer than
6 hours.

– svn, svn2: The synchronization scripts are maintained in an SVN repository. We require that
when started, the synchronization scripts are the latest version available in the repository
(largest SVN revision number). We use two different formalizations, svn and svn2. The
policy svn uses the status parameter of the predicate symbol svn. The policy svn2 compares
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Table 4.1: Policy Formalizations in MFOTL
policy MFOTL formalization
delete �∀user.∀data. delete(user, db2, data)→ user ≈ script2
insert �∀user.∀data. insert(user, db2, data)→ user ≈ script1

select
�∀user.∀data. select(user, db2, data)→

user ≈ script1 ∨ user ≈ script2 ∨ user ≈ triggers
update �∀user.∀data.¬update(user, db2, data)

script1

�∀db.∀data. select(script1, db, data) ∨ insert(script1, db, data) ∨
delete(script1, db, data) ∨ update(script1, db, data) →(

(¬ �[0,1s) �[0,1s) end(script1)) S ( �[0,1s) �[0,1s) start(script1))
)
∨

�[0,1s) �[0,1s) end(script1)

runtime
�∀script. start(script)→

(¬ �[0,1s) �[0,1s) end(script)) ∧ �[1s,6h) end(script)

svn
�∀script. start(script)→

�[0,1s) �[0,10s) ∃url.∃rev. svn(script, latest, url, rev)

svn2
�∀script.∀status.∀url.∀rev. svn(script, status, url, rev)→
�[1s,∞)

(
commit(url, rev′)→ rev′ � rev

)
ins-1-2

�∀user.∀data. insert(user, db1, data) ∧ data 0 unknown →
�[0,1s) �[0,30h] ∃user′. insert(user′, db2, data)∨

delete(user′, db1, data)

ins-2-3
�∀user.∀data. insert(user, db2, data) ∧ data 0 unknown →

�[0,1s) �[0,60s) ∃user′. insert(user′, db3, data)

ins-3-2
�∀user.∀data. insert(user, db3, data) ∧ data 0 unknown →

�[0,60s) �[0,1s) ∃user′. insert(user′, db2, data)

del-1-2

�∀user.∀data. delete(user, db1, data) ∧ data 0 unknown →(
�[0,1s) �[0,30h) ∃user′. delete(user′, db2, data)

)
∨(

( �[0,1s) �[0,30h) ∃user′. insert(user′, db1, data))∧
(�[0,30h) �[0,30h) ¬∃user′. insert(user′, db2, data))

)
del-2-3

�∀user.∀data. delete(user, db2, data) ∧ data 0 unknown →
�[0,1s) �[0,60s) ∃user′. delete(user′, db3, data)

del-3-2
�∀user.∀data. delete(user, db3, data) ∧ data 0 unknown →

�[0,60s) �[0,1s) ∃user′. delete(user′, db2, data)
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the revision number parameter of the predicate symbol svn with the committed revision
numbers obtained from the subversion log via the predicate symbol commit. For the policy
svn we let the logging mechanism compute the latest revision number, while for the policy
svn2 we compute it using the monitor. Monitoring both policies allows us to compare how
efficiently the monitor copes with these different formalizations and to observe the impact
of offloading the monitor by doing pre-computations in the logging mechanisms.

– ins-1-2, ins-2-3, ins-3-2: Data uploaded by the phone into db1 must be propagated to all
databases. In particular, ins-1-2 requires that data uploaded into db1 must be inserted
into db2 within 30 hours after the upload, unless it has been deleted from db1 in the
meantime. Furthermore, ins-2-3 and ins-3-2 require that data may be inserted into db2 iff it
is inserted into db3 within 1 minute. The time limit from db1 to db2 is 30 hours because
the synchronization scripts run once every 24 hours and can run for up to 6 hours. The
time limit from db2 to db3 is only 60 seconds as this synchronization is implemented by
database triggers that start immediately upon a change in db2. Note that these policies
require propagating new data between db2 and db3 in both directions. However, between
db1 and db2 only one direction is required. The reason is the incomplete logging for db1.

– del-1-2, del-2-3, del-3-2: Data deleted from db1 must be consistently deleted from all
databases. The policies del-2-3 and del-3-2 are analogous to the policies ins-2-3 and
ins-3-2, respectively. The formalization of the policy del-1-2 is more involved: If data is
deleted from db1, then this data must also be deleted from db2 within 30 hours. However,
if the data has just been uploaded to db1 and not yet propagated to db2, then it should
not be propagated to db2 in the future either. Since the propagation would happen within
at most 30 hours, we can simply consider the past and the future 30 hours to determine
whether data has been or will be propagated to db2.

Note that all formulas in Table 4.1 are collapse-sufficient. However, some policies have
slightly weaker or stronger variants that are not collapse-sufficient. For example, we obtained
ins-2-3 from the policy “all data inserted into db2 must also be inserted into db3 within
60 seconds” by weakening the formula �∀users.∀data. insert(user, db2, data) ∧ data 0
unknown→ �[0,60s) ∃user′. insert(user′, db3, data). Intuitively, ins-2-3 is the policy formal-
ization that does not distinguish the relative ordering of the insertions into db2 and db3 when
they are logged with equal timestamps. This is because the 1 second timestamp granularity that
is used may not be fine enough: the database triggers may be activated within milliseconds.

Logging Mechanisms. We extended the data-collection setup with mechanisms to log
policy-relevant actions. We installed logging mechanisms for the three databases, the script
script1, and the SVN repository, assuming synchronized clocks for timestamping. Adding
logging mechanisms to the databases was not straightforward, so we discuss them in more
detail.

As logs for the database db1 were not available, we implemented a proxy to inspect
interactions of participants and phones with db1. The proxy logs what data is inserted and
deleted. To observe the insertion of new data, we monitor the network traffic when the phone
uploads data. For deletions, we use a custom front-end that logs the requests for deleting data.
For practical reasons, we could deploy these mechanisms only for 2 out of the 180 participants.
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Hence, we have only partial logging for db1. However, the partial logging affects only 2 out
of the 14 policies.

The databases db2 and db3 reside physically on a single PostgreSQL server, which logs the
SQL queries. We extract relevant actions from these PostgreSQL logs. The main challenge is
to determine what data is processed in a query since only the query itself is logged. Fortunately,
most relevant queries are made by automated scripts or database triggers and contain enough
information to determine what data is used. For example, an insert or delete query initiated
by a synchronization script includes the identifier of the used data record. Hence, a simple
syntactic analysis of these queries suffices to log the relevant actions in sufficient detail. When
the analysis failed to extract the data, we identified the data with the constant unknown.

4.2 Evaluation

Performance. We evaluated the performance of the monitor on logs from the data-collection
campaign. We now describe the logs, the optimizations we made when monitoring the logs,
and the monitor’s performance.

We monitored all formulas shown in Table 4.1 on a log file covering approximately one
year of the data-collection campaign. We obtained this log file by interleaving logs from
the different log producers to produce one interleaved log that we subsequently collapsed.
Note that all monitored formulas are collapse-sufficient, so the monitor correctly reports all
violations after inspecting the collapsed log.

We now describe the collapsed log. It contains approximately 5 million time points and
218 million actions (the total number of tuples in all relations). The major part consists of
insertions into the three databases: more than 107 million insertions into db2 and db3 each,
and 360,000 insertions into db1. The smaller number of logged insertions for db1 is due to
the incomplete logging. There are about 3 million select actions and 700,000 update actions
on db2 and db3. All other types of actions occurred less than 1,000 times in the whole log.

For comparison, before collapsing, the interleaved log was larger. It contained approxi-
mately 400 million time points and a similar number of log actions. The collapsing reduced the
number of time points because not all time points in the interleaving had a unique timestamp.
The main reason why the total number of log actions was decreased by collapsing is that for
most SQL select queries on database db3 we could not determine what data was used. These
were logged as using unknown data and therefore could not be distinguished from each other.
As there were multiple such indistinguishable actions logged per time unit (second), they were
always preserved as only one logged action per timestamp.

For the evaluation, we used the MONPOLY tool [BHKZ12] running on a desktop computer
with an Intel Core i5 2.67 GHz CPU and 8 GB of RAM. To monitor all policies we made two
optimizations.

The first optimization was collapsing the interleaving. Note that all monitored formulas are
interleaving-sufficient, so the monitor would correctly report all violations after inspecting an
arbitrary interleaving. However, it turned out that monitoring an interleaving was computation-
ally infeasible for four policies: del-1-2, ins-1-2, ins-2-3, and ins-3-2. Monitoring the policy
del-1-2 exceeded the memory available on our computer and monitoring the policies ins-1-2,
ins-2-3, and ins-3-2 took too long. For example, monitoring the policy ins-2-3 only on the
first two months of the one year log file took 17 days. Monitoring the collapsed interleaving
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Table 4.2: Monitor Performance
collapse, rewritten formulas collapse interleaving

policy running time memory used running time memory used running time memory used
delete 17 min 14 MB 17 min 14 MB 31 min 12 MB
insert 21 min 14 MB 21 min 14 MB 32 min 12 MB
select 17 min 15 MB 17 min 15 MB 34 min 12 MB
update 17 min 14 MB 17 min 14 MB 33 min 12 MB
script1 21 min 14 MB 22 min 14 MB 57 min 13 MB
runtime 18 min 30 MB 19 min 30 MB 52 min 2866 MB
svn 17 min 14 MB 17 min 14 MB 38 min 22 MB
svn2 17 min 14 MB 17 min 14 MB 33 min 12 MB
ins-1-2 34 min 1014 MB 14 days 1387 MB - -
ins-2-3 49 min 20 MB 52 min 20 MB - -
ins-3-2 49 min 15 MB 49 min 15 MB - -
del-1-2 57 min 3313 MB 69 min 3248 MB - -
del-2-3 18 min 14 MB 17 min 14 MB 38 min 26 MB
del-3-2 17 min 14 MB 17 min 14 MB 37 min 12 MB

was computationally feasible for all policies. For policies, which we could monitor already on
the interleaving, the monitor was up to three times faster. However, monitoring ins-1-2 still
took a long time, namely 2 weeks.

The second optimization was rewriting formulas into collapse-optimized formulas. The
time needed to monitor the policy ins-1-2 improved from 2 weeks to 34 minutes and for
del-1-2 it improved from 69 minutes to 57 minutes. For other policies, the difference was
negligible.

Table 4.2 shows the monitor’s running times and memory usage for each policy with the
different optimizations. A missing value in the table signifies that we could not monitor the
policy.

We now report in detail on the performance of the monitor after the two optimizations:
monitoring performance-optimized formulas on the collapsed log. Monitoring invariants
like the policy delete is fast: the monitor needed around 20 minutes. The more complex
formulas with temporal operators were similarly fast when the formulas matched only a
small number of events from the log file. For example, monitoring the policy svn2 also
took less than 20 minutes. Finally, formulas involving temporal operators with large time
windows and matching a large part of the events in the log were the most expensive ones
to monitor. This was the case for the policies ins-1-2, ins-2-3, and ins-3-2 because the log
consists mainly of insert events. The policies ins-2-3 and ins-3-2 took 49 minutes each. The
policy ins-1-2 took only 34 minutes because there are significantly fewer inserts into db1 than
into db2 or db3. The most expensive policy for monitoring was del-1-2. It took 57 minutes
because its formalization includes multiple temporal operators with large time windows and
the subformulas of these temporal operators match the abundant insert events. ins-1-2 has
only one such operator.

We monitored the logs offline. That is, we first collected the complete logs and then
monitored them. However, an online monitoring approach, where the logs are monitored as
they are generated, seems possible because the running times are orders of magnitude smaller
than the time period covered by the logs.
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For comparison, we have also monitored the simple access control policies on the collapsed
log with the Unix tool grep. The policies update and delete each took only 5 minutes, which
is 3 times faster than the monitor. However, for insert grep needed 4 hours, which is 10 times
slower than the monitor. We suspect that the automaton used by grep to represent a regular
expression was inefficient in dealing with the many insert actions.

The monitor’s memory requirements are also modest. For most policies, the monitor does
not require more than 30 MB of RAM. The only exceptions are ins-1-2 with 1 GB and del-1-2
with 3.3 GB. Again, the reason is temporal operators with large time windows matching a
large number of log events.

We now describe in more detail how the monitor coped with the most difficult policy,
del-1-2. The dashed line in Figure 4.2 shows the monitor’s accumulated running time. The
solid line shows the number of log actions since the beginning of the log. The steepness of the
solid line indicates the amount of data logged at the corresponding time on the x-axis. We see
several flat parts in this curve. During these flat parts, no logs were produced due to server
migration and upgrades of the logging infrastructure. We can also see a steep part at the end
of August 2010. A new version of the synchronization scripts was copying additional data
into the databases for several days. This resulted in an increased number of logged actions.
The running time (dashed line) closely followed the number of logged actions (solid line),
except for a noticeable slow-down of the monitor during the steep part. The dashed line in
Figure 4.3 shows the amount of memory used by the monitor. Most of the time the monitor
needed less than 0.5 GB of memory, but peaked at 3.3 GB at the point where the log curve
was steep. Due to the increased log density, more log actions fell into the time windows of the
temporal operators, causing the monitor to use larger auxiliary relations. Also note that both
the amount of new actions logged and the memory used by the monitor decreased towards the
log’s end. The campaign ended in 2011 and the participants gradually stopped contributing
data towards the campaign’s end.

Findings. To our surprise, the monitor reported a number of policy violations. First, some
access control policies like delete were violated. These violations were due to testing, de-
bugging, and other improvement activities going on while the system was running. Second,
the policy runtime was violated several times, such as when synchronizing the databases
after the server migration. Third, an earlier version of one of the synchronization scripts
contained a bug, which was not detected in previous tests. Only a subset of the insertions were
propagated between the databases. Fourth, while the campaign was running, the infrastructure
was migrated to another server. After the migration, the deployment of the scripts was delayed,
which caused policy violations.

Overall, the main reason for these violations is that we monitored an experimental system
still under development. It is worth pointing out that the privacy of the participants was
guaranteed at all times during the campaign and no data elements were unintendedly lost.
However, as this case study shows, the monitor can be a powerful debugging tool. For
commercial systems, it can detect policy violations thereby protecting the users’ privacy and
increasing users’ trust in the systems. Our findings also show that policy monitoring makes
sense even in systems where users and system administrators are honest and interested in
honoring the policies.
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Figure 4.2: Monitor Running Time on Policy del-1-2
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Figure 4.3: Monitor Memory Usage on Policy del-1-2
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In this chapter, we introduce the theory underpinning our approach of splitting logs into slices
and monitoring the slices separately and in parallel. In particular, in Section 5.1, we lay the
foundations for generating sound and complete slices. In the Sections 5.2 and 5.3, we present
the slicing and filtering methods based on data parameters and timestamps.

We begin with a motivating example. We assume that a system logs relevant system actions
together with the time when they are carried out. For example, when an SSH connection to
the computer c with session identifier s at time τ is established, we assume that the system
logs the action ssh login(c, s)@τ. We monitor these logs to check compliance with policies.
An example of a policy is that SSH connections must be closed after at most 24 hours.

We illustrate the splitting of logs into slices on this policy. Assume that we log two kinds
of actions: ssh login(c, s)@τ and ssh logout(c, s)@τ, which have the expected interpretation.
We split the log data into slices, where each slice consists of the actions with respect to
a specified set of computers. If the specified sets together cover all computers, it should
intuitively be clear that it suffices to monitor each of the slices separately to detect policy
violations. Note that for this example, we can alternatively “slice” the log data with respect to
the session identifiers.

5.1 Slicing Framework

In this section, we present the foundations of meaningfully splitting logs. We present these
foundations for temporal structures, which we use for representing logs, and metric first-order
temporal logic (MFOTL), which we use as a specification language for policies.

Recall that V is the set of variables. In the remainder of this chapter, we assume without
loss of generality that variables are quantified at most once in a formula and that quantified
variables are disjoint from its free variables.

Slices. The theoretical core of our work is to split a temporal structure, which represents
a stream of logged system actions, into smaller temporal structures. The smaller temporal
structures, called slices, are formally defined in Definition 5.1.1.

Definition 5.1.1. Let (D̄, τ̄) and (D̄′, τ̄′) be temporal structures, ` ∈ N ∪ {∞} a length, and
s : [0, `)→ N a strictly increasing monotonic function. (D̄′, τ̄′) is a slice of (D̄, τ̄) if τ′i = τs(i)
and rD

′
i ⊆ rDs(i) , for all i ∈ [0, `) and all r ∈ R.

Intuitively, a slice consists only of some of the logged system actions, up to the time point
`. The function s determines the source of the structure D′i and the timestamp τ′i , for each
i ∈ [0, `). The case where ` is not ∞ corresponds to the situation where we consider only
a finite subsequence of the stream of logged data. However, since temporal structures are
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by definition infinite sequences of structures and timestamps, we mark the end of the finite
sequence by ` ∈ N. The suffix of (D̄, τ̄) after the position ` is irrelevant.

In practice, we can only monitor finite prefixes of temporal structures. Hence, the original
temporal structure and the slices are finite prefixes in an implementation. To ease the exposi-
tion, we require that temporal structures and thus also logs describe infinite streams of system
actions.

Soundness and Completeness Requirements. To meaningfully monitor slices separately,
we impose that at least one of the slices violates the given policy if and only if the original
temporal structure violates the policy. We relax this requirement by associating each slice
with a space that restricts the kind of violations. In the following, we define soundness
and completeness requirements for the slices relative to such spaces. We call these spaces
restrictions.

Definition 5.1.2. A restriction is a pair (D,T ), where D : V → 2D and T ⊆ N is an interval.

A valuation v is permitted by the restriction (D,T ) if v(x) ∈ D(x), for every variable x ∈ V .
A timestamp τ is permitted by the restriction (D,T ) if τ ∈ T . The restriction (D,T ) with
D(x) = D, for each x ∈ V , and T = N is called the non-restrictive restriction.

Definition 5.1.3. Let (D̄, τ̄) and (D̄′, τ̄′) be temporal structures, (D,T ) a restriction, and φ a
formula.

(i) (D̄′, τ̄′) is (D,T )-sound for (D̄, τ̄) and φ if for all valuations v permitted by (D,T ) and
for all timestamps t ∈ T, it holds that (D̄, τ̄, v, i) |= φ, for all i ∈ N with τi = t, implies
(D̄′, τ̄′, v, j) |= φ, for all j ∈ N with τ′j = t.

(ii) (D̄′, τ̄′) is (D,T )-complete for (D̄, τ̄) and φ if for all valuations v permitted by (D,T )
and for all timestamps t ∈ T, it holds that (D̄, τ̄, v, i) 6|= φ, for some i ∈ N with τi = t,
implies (D̄′, τ̄′, v, j) 6|= φ, for some j ∈ N with τ′j = t.

Each slice of a temporal structure is associated with a restriction. The original temporal
structure is associated with the non-restrictive restriction. If we split a temporal structure into
slices, we must associate a restriction with each slice. These restrictions refine the restriction
associated to the given temporal structure. In Definition 5.1.4 we give conditions that the
refined restrictions must fulfill.

Definition 5.1.4. A family of restrictions (Dk,T k)k∈K refines the restriction (D,T ) if

(R1) D(x) ⊇
⋃

k∈K Dk(x), for every x ∈ V,

(R2) T ⊇
⋃

k∈K T k, and

(R3) for every valuation v permitted by (D,T ) and for every t ∈ T, there is some k ∈ K such
that v is permitted by (Dk,T k) and t ∈ T k.

Intuitively, conditions (R1) and (R2) require that the refined restrictions do not permit
more than the original restriction. That is, the family of refined restrictions must not permit
valuations and timestamps that are not permitted by the original restriction. Condition (R3)
requires that the refined restrictions cover everything covered by the original restriction. That
is, every combination of a valuation and a timestamp permitted by the original restriction must
be permitted by at least one of the refined restrictions.

50



5.1 Slicing Framework

Slicers. We call a mechanism that generates the slices and the associated restrictions a
slicer. In Definition 5.1.5 we give requirements that the slices and the associated restrictions
produced by a slicer must fulfill. In Theorem 5.1.6 we show that these requirements suffice to
ensure that monitoring the slices is equivalent to monitoring the original temporal structure
with respect to the associated restrictions. In the Sections 5.2 and 5.3, we provide specific
slicers that split a temporal structure by data and by timestamps and filter out parts of the
temporal structure that are “irrelevant” with respect to the monitored formula. Algorithmic
realizations of slicers are given in Chapter 6.

Definition 5.1.5. A slicer sφ for the formula φ is a function that takes as input a temporal
structure (D̄, τ̄) and a restriction (D,T ). It returns a family of temporal structures (D̄k, τ̄k)k∈K

and a family of restrictions (Dk,T k)k∈K , where the returned families satisfy the following
criteria:

(S1) (Dk,T k)k∈K refines (D,T ).

(S2) (D̄k, τ̄k) is (Dk,T k)-sound for (D̄, τ̄) and φ, for each k ∈ K.

(S3) (D̄k, τ̄k) is (Dk,T k)-complete for (D̄, τ̄) and φ, for each k ∈ K.

Theorem 5.1.6. Let sφ be a slicer for the formula φ. Let sφ, on input temporal structure (D̄, τ̄)
and restriction (D,T ), return the family of temporal structures (D̄k, τ̄k)k∈K and the family of
restrictions (Dk,T k)k∈K as output. The following conditions are equivalent:

(1) (D̄, τ̄, v, i) |= φ, for all valuations v permitted by (D,T ) and all i ∈ N with τi ∈ T.

(2) (D̄k, τ̄k, v, i) |= φ, for all k ∈ K, all valuations v permitted by (Dk,T k), and all i ∈ N with
τk

i ∈ T k.

Proof. (2) follows from (1) because (Dk,T k)k∈K refines (D,T ) (condition (S1) in Defini-
tion 5.1.5) and because (D̄k, τ̄k) is (Dk,T k)-sound for (D̄, τ̄) and φ, for each k ∈ K (condi-
tion (S2) in Definition 5.1.5).

To show that (2) implies (1), we show the contrapositive. Let v be a valuation and i ∈ N
such that (D̄, τ̄, v, i) 6|= φ, v is permitted by (D,T ) and τi ∈ T . Because (Dk,T k)k∈K refines
(D,T ) (condition (S1) in Definition 5.1.5), there is a k ∈ K such that v is permitted by
(Dk,T k) and τi ∈ T k. Because (D̄k, τ̄k) is (Dk,T k)-complete for (D̄, τ̄) and φ (condition (S3)
in Definition 5.1.5), (D̄k, τ̄k, v, j) 6|= φ, for some j ∈ N with τk

j = τi. �

Note that Theorem 5.1.6 does not require that if the original temporal structure is violated
then a slice is violated for the same valuation and timestamp as the original temporal structure.
The theorem’s proof establishes a stronger result. Namely, the valuation and timestamp for a
violation must match between the original temporal structure and the slice.

Combination. For temporal structures representing very large logs, a single slicer may
not suffice to obtain slices of manageable sizes. To overcome this problem, we combine
slicers: the slices produced by one slicer can be further decomposed by another slicer to obtain
smaller slices. We formalize the combination of slicers in Definition 5.1.7. Afterwards, in
Theorem 5.1.8, we prove that the combination of slicers is again a slicer.
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Definition 5.1.7. Let sφ and s′φ be slicers for the formula φ. Given input temporal structure
(D̄, τ̄) and restriction (D,T ), the combination s′φ ◦k̂ sφ for the index k̂ produces output as
follows. Let (D̄k, τ̄k)k∈K and (Dk,T k)k∈K be the family of temporal structures and the family
of restrictions returned by sφ for the input (D̄, τ̄) and (D,T ).

• If k̂ < K then s′φ ◦k̂ sφ returns (D̄k, τ̄k)k∈K and (Dk,T k)k∈K .

• If k̂ ∈ K then s′φ ◦k̂ sφ returns (D̄k, τ̄k)k∈K′′ and (Dk,T k)k∈K′′ , where K′′ := (K \ {k̂})∪K′

and (D̄k, τ̄k)k∈K′ and (Dk,T k)k∈K′ are the families returned by s′φ for the input (D̄k̂, τ̄k̂)

and (Dk̂,T k̂), assuming K ∩ K′ = ∅.

Intuitively, we first apply the slicer sφ. The index k̂ specifies which of the obtained slices
should be sliced further. If there is no k̂th slice, the second slicer s′φ does nothing. Otherwise,
we use s′φ to make the k̂th slice smaller. Note that by combing the slicer sφ with different
indices, we can slice all of sφ’s outputs further. Note too that an algorithmic realization of the
function s′φ ◦k̂ sφ does not necessarily need to compute the output of sφ first before applying
s′φ.

Theorem 5.1.8. The combination s′φ ◦k̂ sφ of the slicers sφ and s′φ for the formula φ is a slicer
for the formula φ.

Proof. We show that s′φ ◦k̂ sφ satisfies the conditions (S1) to (S3) in Definition 5.1.5. Regard-
ing (S1), sφ is a slicer and therefore the family (Dk,T k)k∈K refines (D,T ). If k̂ < K, then we
are done. If k̂ ∈ K, then s′φ is a slicer and therefore the family (Dk,T k)k∈K′ refines (Dk̂,T k̂).
From K ∩ K′ = ∅, it follows that (Dk,T k)k∈(K\{k̂})∪K′ refines (D,T ).

Regarding (S2), sφ is a slicer and therefore (D̄k, τ̄k) is (Dk,T k)-sound for (D̄, τ̄) and φ, for
every k ∈ K. If k̂ < K, then we are done. If k̂ ∈ K, then s′φ is a slicer and therefore (D̄k, τ̄k) is

(Dk,T k)-sound for (D̄k̂, τ̄k̂) and φ, for every k ∈ K′. Because (Dk,T k)k∈K′ refines (Dk̂,T k̂) and
because (D̄k̂, τ̄k̂) is (Dk̂,T k̂)-sound for (D̄, τ̄) and φ, it follows that (D̄k, τ̄k) is (Dk,T k)-sound
for (D̄, τ̄) and φ, for every k ∈ K′. From K ∩ K′ = ∅, it follows that (D̄k, τ̄k) is sound for
(D̄, τ̄) and φ, for every k ∈ (K \ {k̂}) ∪ K′.

Finally, the proof for (S3) is analogous to the proof for (S2). �

5.2 Slicing Data

In this section, we present slicers that split the relations of a temporal structure. We call the
resulting slices data slices. Formally, the temporal structure (D̄′, τ̄′) is a data slice of the
temporal structure (D̄, τ̄) if (D̄′, τ̄′) is a slice of (D̄, τ̄), where the function s : [0, `) → N in
Definition 5.1.1 is the identity function and ` = ∞. In the following, we present concrete
slicers, so-called data slicers, that return sound and complete data slices relative to a restriction.
We also present a fragment of MFOTL for which the produced data slices are sound with
respect to less restrictive restrictions.
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5.2.1 Data Slicer

In a nutshell, a data slicer works as follows. A data slicer for a formula φ, a slicing variable x,
which is a free variable in φ, and slicing sets, that is, sets of possible values for x, constructs
one slice for each slicing set. The slicing sets can be chosen freely, and can overlap, as long
as their union covers all possible values for x. Intuitively, each slice excludes the elements of
the relations interpreting the predicate symbols that are irrelevant to determine φ’s truth value
when x takes values from the slicing set. For values outside of the slicing set, the formula may
evaluate to a different truth value on the slice than on the original temporal structure.

We begin by defining the slices that a data slicer outputs.

Definition 5.2.1. Let φ be a formula, x ∈ V a slicing variable, (D̄, τ̄) a temporal structure,
and S ⊆ D a slicing set. The (S , x, φ)-slice of (D̄, τ̄) is the data slice (D̄′, τ̄′), where the
relations are as follows. For all r ∈ R, all i ∈ N, and all a1, . . . , aι(r) ∈ D, it holds that
(a1, . . . , aι(r)) ∈ rD

′
i iff for every j with 1 ≤ j ≤ ι(r), there is an atomic subformula of φ of the

form r(t1, . . . , tι(r)) that fulfills at least one of the following conditions:

(a) t j is the variable x and a j ∈ S .

(b) t j is a variable y different from x.

(c) t j is a constant symbol c with cD̄ = a j.

Intuitively, the Conditions (a)–(c) ensure that a slice contains all elements from the relations
interpreting predicate symbols that are needed to evaluate φ when x takes values from the
slicing set. For this, we only need to consider atomic subformulas of φ that contain a predicate
symbol. The elements themselves are tuples and every item of the tuple must satisfy at least
one of the conditions. If a predicate symbol includes the slicing variable, then only values
from the slicing set are relevant (Condition (a)). If it includes another variable, then all
possible values are relevant (Condition (b)). Finally, if it includes a constant symbol, then
the interpretation of the constant symbol is relevant (Condition (c)). In the special case of
a predicate symbols with arity 0, tuples from the interpretation of these predicate symbols
are always included in a data slice independently of the formula. Further optimizations are
possible, namely, including only tuples from the interpretation of those predicate symbols that
occur in the formula.

The following example illustrates Definition 5.2.1. It also demonstrates that the choice
of the slicing variable can influence how lean the slices are and how much overhead, that is
duplication of log data in slices, the slicing causes. Ideally, we want each logged action to
appear in exactly one slice, but some logged actions may have to be duplicated in multiple
slices. In the worst case, each slice contains the complete original temporal structure.

Example 5.2.2. Consider the formula φ = snd(src,msg)→ �[0,6) rcv(0,msg), where src and
msg are variables and 0 is a constant symbol that is interpreted by the domain element 0.
Intuitively, the formula φ formalizes that all sent messages are received by node 0 within 5
time units. Assume that at time point 0 the relations of D0 of the original temporal structure
(D̄, τ̄) for the predicate symbols snd and rcv are

sndD0 = {(1, 1), (1, 2), (3, 3), (4, 4)} and rcvD0 = {(0, 1), (0, 2), (0, 3), (0, 4)} .
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We slice on the variable src. For the slicing sets S = {1, 2}, the (S , src, φ)-slice contains the
structure D′0 with

sndD′0 = {(1, 1), (1, 2)} and rcvD
′
0 = {(0, 1), (0, 2), (0, 3), (0, 4)} .

For the predicate symbol snd, only those tuples are included where the first parameter takes
values from the slicing set. This is because the first parameter occurs as the slicing variable
src in the formula. For the predicate symbol rcv, those tuples are included where the first
parameter is 0 because it occurs as a constant symbol in the formula.

For the slicing set S ′ = {3, 4}, the (S ′, src, φ)-slice contains the structure D′′0 with

sndD′′0 = {(3, 3), (4, 4)} and rcvD
′′
0 = {(0, 1), (0, 2), (0, 3), (0, 4)} .

The tuples in the relation for the predicate symbol rcv are duplicated in all slices because the
first element of the tuples, 0, occurs as a constant symbol in the formula. Condition (c) in
Definition 5.2.1 is therefore always satisfied and the tuple is included.

Next, we slice on the variable msg instead of the variable src. The (S ,msg, φ)-slice contains
the structure D′0 with

sndD′0 = {(1, 1), (1, 2)} and rcvD
′
0 = {(0, 1), (0, 2)} .

For both predicate symbols snd and rcv, only those tuples are included where the second
parameter (variable msg) takes values from the slicing set S . This is because the second
parameter occurs as the slicing variable msg in the formula. The (S ′,msg, φ)-slice contains
the structure D′′0 with

sndD′′0 = {(3, 3), (4, 4)} and rcvD
′′
0 = {(0, 3), (0, 4)} .

The following lemma shows that an (S , x, φ)-slice is truth preserving for valuations of the
slicing variable x within the slicing sets S . We use the lemma to establish the soundness and
completeness of data slices, thereby showing in Theorem 5.2.5 that a data slicer is a slicer,
and therefore Theorem 5.1.6 applies.

Lemma 5.2.3. Let φ be a formula, x ∈ V a variable not bound in φ, (D̄, τ̄) a temporal
structure, S ⊆ D a slicing set, and (D̄′, τ̄) the (S , x, φ)-slice of (D̄, τ̄). For all i ∈ N and
valuations v with v(x) ∈ S it holds that (D̄′, τ̄, v, i) |= φ iff (D̄, τ̄, v, i) |= φ.

Proof. We proceed by induction over the structure of the formula φ. The base case consists of
the atomic formulas t ≺ t′, t ≈ t, and r(t1, . . . , tι(r)).

Satisfaction of t ≺ t′ and t ≈ t depends only on the valuation, so it trivially follows that
(D̄′, τ̄, v, i) |= t ≺ t′ iff (D̄, τ̄, v, i) |= t ≺ t′ and (D̄′, τ̄, v, i) |= t ≈ t′ iff (D̄, τ̄, v, i) |= t ≈ t′. For
the formula r(t1, . . . , tι(r)) we show the two directions of the equivalence separately.

1. We first show that (D̄′, τ̄, v, i) |= r(t1, . . . , tι(r)) implies (D̄, τ̄, v, i) |= r(t1, . . . , tι(r)). From
(D̄′, τ̄, v, i) |= r(t1, . . . , tι(r)) it follows that (v(t1), . . . , v(tι(r))) ∈ rD

′
i . Since (D̄′, τ̄) is

a data slice of (D̄, τ̄) it follows that (v(t1), . . . , v(tι(r))) ∈ rDi and hence (D̄, τ̄, v, i) |=
r(t1, . . . , tι(r)).
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2. Next, we show that (D̄′, τ̄, v, i) 6|= r(t1, . . . , tι(r)) implies (D̄, τ̄, v, i) 6|= r(t1, . . . , tι(r)).
From (D̄′, τ̄, v, i) 6|= r(t1, . . . , tι(r)) it follows that (v(t1), . . . , v(tι(r))) < rD

′
i . We first

show that one of the Conditions (a)–(c) in Definition 5.2.1 is satisfied for the tuple
(v(t1), . . . , v(tι(r))). For any j with 1 ≤ j ≤ ι(r), we make a case split based on whether
the term t j in r(t1, . . . , tι(r)) is the slicing variable x, another variable y , x, or a constant
symbol c.

a) If t j is the slicing variable x then from v(x) ∈ S we know that v(t j) ∈ S . Therefore,
Condition (a) is satisfied.

b) If t j is a variable y , x then Condition (b) is satisfied.

c) If t j is the constant symbol c then v(t j) = cD̄ and hence Condition (c) is satisfied.

It follows that (v(t1), . . . , v(tι(r))) < rDi and hence (D̄, τ̄, v, i) 6|= r(t1, . . . , tι(r)).

The step case follows straightforwardly from the base case and the fact that the slice and
the original temporal structure use the same τ̄. In particular, any difference when evaluating a
formula stems only from a difference in the evaluation of its atomic subformulas. �

According to Definition 5.2.4 and Theorem 5.2.5 below, a data slicer is a slicer that splits a
temporal structure into a family of (S , x, φ)-slices. Furthermore, it refines the given restriction
with respect to the given slicing sets.

Definition 5.2.4. A data slicer dφ,x,(S k)k∈K
for the formula φ, slicing variable x ∈ V, and

family of slicing sets (S k)k∈K is a function that takes as input a temporal structure (D̄, τ̄) and
a restriction (D,T ). It returns a family of temporal structures (D̄k, τ̄k)k∈K and a family of
restrictions (Dk,T k)k∈K , where (D̄k, τ̄k) is the (S k ∩ D(x), x, φ)-slice of (D̄, τ̄) and (Dk,T k) =

(D[x 7→S k ∩ D(x)],T ), for each k ∈ K.

Theorem 5.2.5. A data slicer dφ,x,(S k)k∈K
is a slicer for the formula φ if the slicing variable x

is not bound in φ and
⋃

k∈K S k = D.

Proof. We show that dφ,x,(S k)k∈K
satisfies the criteria (S1)–(S3) in Definition 5.1.5.

For (S1), we show that the family (Dk,T k)k∈K fulfills the conditions (R1)–(R3) in Defini-
tion 5.1.4: (R1) follows from

⋃
k∈K Dk(x) =

⋃
k∈K(S k ∩ D(x)) ⊆

⋃
k∈K D(x) = D(x). (R2)

follows from T k = T , for each k ∈ K. (R3) follows from the assumption
⋃

k∈K S k = D and the
equalities Dk = D[x 7→S k ∩ D(x)] and T k = T , for each k ∈ K.

(S2) and (S3) follow directly from Lemma 5.2.3. �

5.2.2 Data Filter

We can speed up the monitoring of temporal structures by filtering them before monitoring.
Filtering removes some parts of the temporal structure, which are not needed to evaluate the
monitored formula. In the following, we present a slicer, which we call a data filter, that
discards logged actions.

A data filter is a special case of a data slicer, where the slicing variable does not occur
in φ and where we consider only the single slicing set of all possible values. The data filter
produces a single slice, the filtered temporal structure, and a single restriction, which is
identical to the restriction of the original temporal structure. Intuitively, the obtained slice
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excludes all tuples from the relations interpreting those predicate symbols that do not occur in
φ. Furthermore, if a predicate symbol r ∈ R occurs in φ only with arguments that are constant
symbols, then tuples with interpretations of those constant symbols are excluded that do not
occur in φ as arguments of r.

Definition 5.2.6. A data filter fφ for the formula φ is a data slicer dφ,x,(S k)k∈K
, where the slicing

variable x ∈ V does not occur in φ, S 0 = D, and K = {0}.

It is easy to see that the slice that a data filter outputs is independent of the choice of the
slicing variable and therefore the slice is unique. From Lemma 5.2.3 we obtain that the filtered
and the original temporal structures are equivalent in the sense that the filtered temporal
structure satisfies the formula φ exactly when the original temporal structure satisfies the
formula with respect to the restriction (D,T ). If D does not restrict the range of the slicing
variable, we obtain full equivalence in the sense that, irrespective of any restrictions, the
filtered temporal structure satisfies φ exactly when the original temporal structure satisfies φ.
Note that the data filter is a slicer by Theorem 5.2.5.

The filtering feature of the data filter is built-in into the data slicer. Therefore, applying
the data filter to a data slice would have no effect. However, such a filtering feature may be
missing in other slicers, such as the time slicer described in Section 5.3.1, so it makes sense to
data filter slices in general.

5.2.3 A Non-Restrictive Fragment

In the following, we describe a fragment where no restrictions are needed. By Lemma 5.2.3
the slices from Definition 5.2.1 are sound and complete for valuations where the slicing
variable takes values from the slicing set. That is, policy violations where the slicing variable
takes values outside of the slicing set are “spurious” violations. For formulas in the fragment,
no spurious violations exist. This allows us to use any MFOTL monitoring algorithm without
modifying it to suppress the spurious violations.

To describe the fragment, we first introduce the notion of valid slicing sets in Definition 5.2.7
and variable overlap in Definition 5.2.9. Intuitively, a slicing set is valid if it includes the
interpretations of the constant symbols from the signature. Note that we can always assume
the smallest such set that contains only the constant symbols that occur in the formula φ.
Distinct variables overlap in a formula if they are used as the same argument of a predicate
symbol.

Definition 5.2.7. The set S is a valid slicing set for the temporal structure (D̄, τ̄) if cD̄ ∈ S ,
for all c ∈ C.

Example 5.2.8. Consider the formula φ = �(p(x) → q(x)) ∧ p(c), where c is a constant
symbol. Suppose we slice for the variable x, where we choose an invalid slicing set S that
does not contain c’s interpretation. In the slice, due to Condition (c) in Definition 5.2.1, c’s
interpretation is included in p’s interpretation at a time point whenever it is contained in
p’s interpretation in the original temporal structure. However, it is not in q’s interpretation.
Therefore, spurious violations might be reported when monitoring the (S , x, φ)-slice.

Definition 5.2.9. Two distinct variables x and y overlap in the formula φ if for some predicate
symbol r ∈ R, φ contains atomic subformulas r(s1, . . . , sι(r)) and r(t1, . . . , tι(r)) where s j = x
and t j = y, for some j with 1 ≤ j ≤ ι(r),
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Example 5.2.10. If the slicing variable overlaps with another variable for the predicate
symbol r ∈ R, then all tuples from r’s interpretation are included in a slice, independently of the
contents of the slicing set. This leads to spurious violations if there is no such variable overlap
for other predicate symbols. For example, consider the formula �(p(x)→ q(x)) ∨ �[0,3) ¬p(y)
and slicing for the variable x. Only some tuples from the relations for q are included in a
slice but all tuples of the relations of p are included. Therefore, spurious violations might be
reported when monitoring the slice.

Next, we define the sets DT, DF, and DE. Membership of a formula in these sets reflects
whether the monitored formula is satisfied on the slice for a slicing variable interpretation that
lies outside of the slicing set. In a nutshell, for all slicing variable interpretations outside of
the slicing set, a formula in the set DF is never satisfied, a formula in the set DT is always
satisfied, and a formula in the set DE is satisfied whenever it is satisfied on the original
temporal structure. The sets are parametrized by the slicing variable. For example, for the
slicing variable x, the sets are DTx, DFx, and DEx.

Definition 5.2.11. Let φ be a formula and x ∈ V a variable that does not overlap with another
variable in φ.

1. φ ∈ DTx iff for all formulas ζ where x does not overlap with another variable in ζ
and φ is a subformula of ζ, all temporal structures (D̄, τ̄), all slicing sets S ⊆ D that
are valid for (D̄, τ̄) and φ, all valuations v with v(x) < S , and all i ∈ N, it holds that
(P̄, τ̄, v, i) |= φ, where (P̄, τ̄) is the (S , x, ζ)-slice of (D̄, τ̄),

2. φ ∈ DFx iff for all formulas ζ where x does not overlap with another variable in ζ
and φ is a subformula of ζ, all temporal structures (D̄, τ̄), all slicing sets S ⊆ D that
are valid for (D̄, τ̄) and φ, all valuations v with v(x) < S , and all i ∈ N, it holds that
(P̄, τ̄, v, i) 6|= φ, where (P̄, τ̄) is the (S , x, ζ)-slice of (D̄, τ̄),

3. φ ∈ DEx iff for all formulas ζ where x does not overlap with another variable in ζ
and φ is a subformula of ζ, all temporal structures (D̄, τ̄), all slicing sets S ⊆ D that
are valid for (D̄, τ̄) and φ, all valuations v with v(x) < S , and all i ∈ N, it holds that
(P̄, τ̄, v, i) |= φ iff (D̄, τ̄, v, i) |= φ, where (P̄, τ̄) is the (S , x, ζ)-slice of (D̄, τ̄).

Membership in the sets DTx, DFx, and DEx is in general undecidable. We delay the proof
of this statement to the end of this section because the proof uses Lemmas and Theorems
established in the rest of this section. Note that these Lemmas and Theorems do not rely on
the statement about undecidability or its proof.

Given undecidability, we approximate membership with syntactic fragments. The fragments
are defined in terms of a labeling algorithm that assigns the labels DTx, DFx, and DEx to a
formula. The fragments are sound but incomplete in the sense that if a formula is assigned to
a label (DTx, DFx, or DEx) then the formula is in the corresponding set (DTx, DFx, or DEx,
respectively). However, not every formula in one of the sets is assigned to the corresponding
label. The algorithm labels atomic subformulas of a formula and propagates the labels bottom-
up to the formula’s root using the labeling rules in Figure 5.1. Note that any syntactic sugar
must be unfolded before applying the rules.
Remark 5.2.12. From the labeling rules for true and the operators S and U we see that the
formulas �I ψ, �I ψ, �I ψ, and �I ψ are labeled exactly as the formula ψ, that is, DTx if
ψ : DTx, DFx if ψ : DFx, and DEx if ψ : DEx.
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r(t1, . . . , tι(r)) : DFx
x ∈ {t1, . . . , tι(r)} r(t1, . . . , tι(r)) : DEx

x < {t1, . . . , tι(r)}

t ≈ t′ : DEx t ≺ t′ : DEx true : DTx true : DEx

ψ : DFx

¬ψ : DTx

ψ : DTx

¬ψ : DFx

ψ : DEx

¬ψ : DEx

ψ : DTx

ψ ∨ χ : DTx

χ : DTx

ψ ∨ χ : DTx

ψ : DFx χ : DFx

ψ ∨ χ : DFx

ψ : DEx χ : DEx

ψ ∨ χ : DEx

ψ : DTx

∃y. ψ : DTx
x , y

ψ : DFx

∃y. ψ : DFx
x , y

ψ : DEx

∃y. ψ : DEx
x , y

ψ : DFx

 I ψ : DFx

ψ : DEx

 I ψ : DEx

ψ : DFx

#I ψ : DFx

ψ : DEx

#I ψ : DEx

χ : DTx

ψ SI χ : DTx

χ : DFx

ψ SI χ : DFx

ψ : DEx χ : DEx

ψ SI χ : DEx

χ : DTx

ψ UI χ : DTx

χ : DFx

ψ UI χ : DFx

ψ : DEx χ : DEx

ψ UI χ : DEx

Figure 5.1: Labeling Rules (Slicing by Data)

Remark 5.2.13. We cannot propagate the label DTx over the operators  I and #I because we
do not know whether τi − τi−1 ∈ I and τi+1 − τi ∈ I, respectively. For  I , we also do not know
whether i > 0.

Example 5.2.14. Consider the formula � snd(src,msg) → �[0,6) rcv(0,msg). After unfold-
ing the syntactic sugar for → we obtain the formula �¬snd(src,msg) ∨ �[0,6) rcv(0,msg).
We explain the labeling for the variables msg. The atomic subformulas snd(src,msg) and
rcv(0,msg) are labeled DFmsg. The subformula ¬snd(src,msg) is labeled DTmsg. The la-
bel DTmsg propagates through the operator ∨ and through the temporal operator �, so
�¬snd(src,msg) ∨ �[0,6) rcv(0,msg) is labeled DTmsg. The labeling for the variable src is
analogous and �¬snd(src,msg) ∨ �[0,6) rcv(0,msg) is labeled DTsrc.

Example 5.2.15. Consider the formula � ssh login(c, s) → �[0,25) ssh logout(c, s). Af-
ter unfolding the syntactic sugar for → we obtain the formula �¬ssh login(c, s) ∨
�[0,25) ssh logout(c, s). We explain the labeling for the variable c. The atomic subfor-

mulas ssh login(c, s) and ssh logout(c, s) are labeled DFc. The formula ¬ssh login(c, s)
is labeled DTc. The label DTc propagates through the operator ∨ and then through the
temporal operator �, so ¬ssh login(c, s) ∨ �[0,25) ssh logout(c, s). and �¬ssh login(c, s) ∨
�[0,25) ssh logout(c, s) are labeled DTc. The labeling for the variable s is analogous and
�¬ssh login(c, s) ∨ �[0,25) ssh logout(c, s) is labeled DTs.

Theorem 5.2.16. For all formulas φ and all variables x ∈ V, if the derivation rules shown
in Figure 5.1 assign the label DTx, DFx, or DEx to φ then φ is in the set DTx, DFx, or DEx,
respectively.

Theorem 5.2.16 establishes the correctness of our labeling rules. Before we formally show
its correctness, we intuitively explain the most representative rules. In the explanations, we
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consider formula satisfaction only for valuations of the slicing variable with values outside of
the slicing set. For ease of exposition, we do not explicitly state this in every sentence.

The first line in Figure 5.1 shows rules for predicate symbols. If the predicate symbol
contains as a parameter the slicing variable x, then it will not be satisfied on a data slice for
values outside of the slicing set, it is therefore in DFx. If the predicate symbol does not contain
as a parameter the slicing variable x, then it will evaluate on the slice exactly as it would
evaluate on the original log and hence it is in DEx.

The next line shows rules for the other atomic formulas. The formulas t ≈ t′ and t ≺ t′ are
in DEx because their evaluation depends only on the valuation, so they evaluate in the same
way on a data slice as they evaluate on the original log. The formula true is syntactic sugar for
∃y. y ≈ y. This formula is always satisfied, so it is in DTx. It also evaluates in the same way
on a data slice as it evaluates on the original log: it is satisfied. Therefore, it is also in DEx.

The third line shows rules for negation. Memberships in the sets DTx and DFx are swapped:
if a formula is satisfied on the slice then its negation will not be satisfied on the slice and vice
versa for the set DFx. If a formula is in DEX then it is satisfied on the slice whenever it is
satisfied on the original log. The negation of this formula will also be satisfied on the slice
whenever it is satisfied on the original log, so the negation is also in DEx.

The next two lines show rules for disjunction. If one of the disjunction operands is always
satisfied (in DTx) then the disjunction is also always satisfied and is in DTx. If neither of
the operands is ever satisfied (in DFx) then so is the disjunction. If both operands of the
disjunction are satisfied on the slice whenever they are satisfied on the original log (in DEx)
then so is the disjunction and it is in DEx.

Finally, we explain the rules for the operator S in the second to last line in Figure 5.1.
Consider the formula φ SI ψ. If ψ is always satisfied (in DTx) then independently of φ the
formula φSIψ is also satisfied and is in DTx. If ψ is never satisfied (in DFx) then independently
of φ the formula φ SI ψ cannot be satisfied. In this case it is in DFx. If both φ and ψ are
satisfied on the slice whenever they are satisfied on the original log (in DEx) then so is φ SI ψ

and it is in DEx.

Proof. We prove Theorem 5.2.16 by induction on the size of the derivation tree assigning
label ` to formula φ. We make a case distinction based on the rules applied to label the
formula, that is, the rule at the tree’s root. However, for clarity, we generally group cases by
the formula’s form.

For readability, and without loss of generality, we fix the slicing variable x and the temporal
structure (D̄, τ̄). Consider formula φ of the form:

• r(t1, . . . , tι(r)) where x ∈ {t1, . . . , tι(r)}. For every formula ζ where x does not overlap
with another variable inζ and φ is a subformula of ζ, every slicing set S ⊆ D that
is valid for (D̄, τ̄) and φ, every i ∈ N, and every valuations v with v(x) < S , let
(P̄, τ̄) be the (S , x, ζ)-slice of (D̄, τ̄). For the tuple (v(t1), . . . , v(tι(r))), none of the
Conditions (a)–(c) in Definition 5.2.1 are satisfied. In particular, Condition (a) is not
satisfied because v(x) < S . Condition (b) is not satisfied because the variable x does
not overlap with any other variable in ζ. Finally, Condition (c) is not satisfied because
v(x) < S and S is a valid slicing set for (D̄, τ̄). It follows that (v(t1), . . . , v(tι(r)) < rPi ,
(P̄, τ̄, v, i) 6|= r(t1, . . . , tι(r)), and hence r(t1, . . . , tι(r)) is in DFx.
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• r(t1, . . . , tι(r)) where x < {t1, . . . , tι(r)}. For every formula ζ where x does not overlap with
another variable in ζ and φ is a subformula of ζ, every slicing set S ⊆ D that is valid for
(D̄, τ̄) and φ, every i ∈ N, and every valuation v with v(x) < S , let (P̄, τ̄) be the (S , x, ζ)-
slice of (D̄, τ̄). We show that (P̄, τ̄, v, i) |= r(t1, . . . , tι(r)) iff (D̄, τ̄, v, i) |= r(t1, . . . , tι(r)),
so that r(t1, . . . , tι(r)) is in DEx.

We first show the implication from right to left. Suppose that (D̄, τ̄, v, i) |= r(t1, . . . , tι(r)),
that is, (v(t1), . . . , v(tι(r)) ∈ rDi . Because the variable x is not among the terms t1, . . . , tι(r),
those terms consist only of constants and of variables other than x. It follows that at
least one of the Conditions (a)–(c) in Definition 5.2.1 is satisfied for every such tuple
(v(t1), . . . , v(tι(r))). Hence, (v(t1), . . . , v(tι(r)) ∈ rPi and thus (P̄, τ̄, v, i) |= r(t1, . . . , tι(r)).

We show the implication from left to right by contradiction. Suppose that (D̄, τ̄, v, i) 6|=
r(t1, . . . , tι(r)), that is, (v(t1), . . . , v(tι(r)) < rDi . It follows that (v(t1), . . . , v(tι(r)) < rPi and
(P̄, τ̄, v, i) 6|= r(t1, . . . , tι(r)).

• t ≺ t′. For every formula ζ where x does not overlap with another variable in ζ and φ is
a subformula of ζ, every slicing set S ⊆ D that is valid for (D̄, τ̄) and φ, every i ∈ N, and
every valuations v with v(x) < S , let (P̄, τ̄) be the (S , x, ζ)-slice of (D̄, τ̄). Satisfaction
of t ≺ t′ depends only on the valuation, so it trivially follows that (P̄, τ̄, v, i) |= t ≺ t′ iff
(D̄, τ̄, v, i) |= t ≺ t′. Therefore, t ≺ t′ is in DEx.

• t ≈ t′. This case is analogous to the previous one.

• true. The subformula true is syntactic sugar for ∃y. y ≈ y. Note that we can always
take a fresh variable y without affecting the meaning of the formula φ. Therefore, the
assumption made at the beginning of the section that variables are quantified at most
once holds.

For every formula ζ where x does not overlap with another variable in ζ and φ is a
subformula of ζ, every slicing set S ⊆ D that is valid for (D̄, τ̄) and φ, every i ∈ N,
and every valuations v with v(x) < S , let (P̄, τ̄) be the (S , x, ζ)-slice of (D̄, τ̄). Trivially,
(P̄, τ̄, v, i) |= true and hence true is in DTx.

It also trivially holds that (D̄, τ̄, v, i) |= true and hence (P̄, τ̄, v, i) |= true iff (D̄, τ̄, v, i) |=
true. Therefore, true is also in DEx.

• ¬ψ. For every formula ζ where x does not overlap with another variable in ζ and φ is a
subformula of ζ, every slicing set S ⊆ D that is valid for (D̄, τ̄) and φ, every i ∈ N, and
every valuations v with v(x) < S , let (P̄, τ̄) be the (S , x, ζ)-slice of (D̄, τ̄).

We first show how the label DFx is propagated. Suppose that ψ is labeled DFx. From
the induction hypothesis it follows that ψ is in DFx so that (P̄, τ̄, v, i) 6|= ψ and hence
(P̄, τ̄, v, i) |= ¬ψ. Therefore, ¬ψ is in DTx.

Next, we show how the label DTx is propagated. Suppose that ψ is labeled DTx. From
the induction hypothesis it follows that ψ is in DTx so that (P̄, τ̄, v, i) |= ψ and hence
(P̄, τ̄, v, i) 6|= ¬ψ. Therefore, ¬ψ is in DFx.

Finally, we show how the label DEx is propagated. Suppose that ψ is labeled DEx.
From the induction hypothesis it follows that ψ is in DEx so that (P̄, τ̄, v, i) |= ψ iff
(D̄, τ̄, v, i) |= ψ. Therefore (P̄, τ̄, v, i) |= ¬ψ iff (D̄, τ̄, v, i) |= ¬ψ and ¬ψ is in DEx.
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• ψ ∨ χ. For every formula ζ where x does not overlap with another variable in ζ and φ is
a subformula of ζ, every slicing set S ⊆ D that is valid for (D̄, τ̄) and φ, every i ∈ N,
and every valuations v with v(x) < S , let (P̄, τ̄) be the (S , x, ζ)-slice of (D̄, τ̄).

Suppose that ψ is labeled DTx. It follows from the induction hypothesis that ψ is in
DTx so that (P̄, τ̄, v, i) |= ψ and hence (P̄, τ̄, v, i) |= ψ ∨ χ. Therefore, ψ ∨ χ is in DTx.

Suppose that χ is labeled DTx. It follows from the induction hypothesis that χ is in DTx

so that (P̄, τ̄, v, i) |= χ and hence (P̄, τ̄, v, i) |= ψ ∨ χ. Therefore, ψ ∨ χ is in DTx.

Suppose that ψ and χ are labeled DFx. It follows from the induction hypothesis that ψ
and χ are in DFx so that (P̄, τ̄, v, i) 6|= ψ and (P̄, τ̄, v, i) 6|= χ. Therefore, (P̄, τ̄, v, i) 6|= ψ∨χ

and ψ ∨ χ is in DFx.

Suppose that ψ and χ are labeled DEx. It follows from the induction hypothesis that
ψ and χ are in DEx, so that (P̄, τ̄, v, i) |= ψ iff (D̄, τ̄, v, i) |= ψ and that (P̄, τ̄, v, i) |= χ iff
(D̄, τ̄, v, i) |= χ. Therefore, (P̄, τ̄, v, i) |= ψ∨χ iff (D̄, τ̄, v, i) |= ψ∨χ and ψ∨χ is in DEx.

• ∃y. ψ where x , y. For every formula ζ where x does not overlap with another variable
in ζ and φ is a subformula of ζ, every slicing set S ⊆ D that is valid for (D̄, τ̄) and φ,
every i ∈ N, and every valuations v with v(x) < S , let (P̄, τ̄) be the (S , x, ζ)-slice of
(D̄, τ̄).

Suppose that ψ is labeled DTx. It follows from the induction hypothesis that ψ is
in DTx and hence (P̄, τ̄, v′, i) |= ψ for all valuations v′ with v′(x) < S . Therefore,
(P̄, τ̄, v[y 7→e], i) |= ψ, for all e ∈ D. Because D is non-empty, it follows that
(P̄, τ̄, v, i) |= ∃y. ψ and ∃y. ψ is in DTx.

Suppose that ψ is labeled DFx. It follows from the induction hypothesis that ψ is in
DFx and hence (P̄, τ̄, v′, i) 6|= ψ for all valuations v′. Therefore, there is no e ∈ D with
(P̄, τ̄, v[y 7→e], i) |= ψ. It follows that (P̄, τ̄, v, i) 6|= ∃y. ψ and ∃y. ψ is in DFx.

Finally, suppose that ψ is labeled DEx. It follows from the induction hypothesis that ψ
is in DEx and hence (P̄, τ̄, v′, i) |= ψ iff (D̄, τ̄, v′, i) |= ψ for all valuations v′. Therefore,
(P̄, τ̄, v[y 7→e], i) |= ψ for some e ∈ D iff (D̄, τ̄, v[y 7→e], i) |= ψ for some e ∈ D. It
follows that (P̄, τ̄, v, i) |= ∃y. ψ iff (D̄, τ̄, v, i) |= ∃y. ψ and ∃y. ψ is in DEx.

•  I ψ For every formula ζ where x does not overlap with another variable in ζ and φ is a
subformula of ζ, every slicing set S ⊆ D that is valid for (D̄, τ̄) and φ, every i ∈ N, and
every valuations v with v(x) < S , let (P̄, τ̄) be the (S , x, ζ)-slice of (D̄, τ̄).

Suppose that ψ is labeled DFx. For i ∈ N with i > 0 and τi − τi−1 ∈ I it follows
from the induction hypothesis that ψ is in DFx, so that (P̄, τ̄, v, i − 1) 6|= ψ and thus
(P̄, τ̄, v, i) 6|=  I ψ. For i > 0 with τi−τi−1 < I and for i = 0 it follows from the definition
of the operator  I that (P̄, τ̄, v, i) 6|=  I ψ. Therefore,  I ψ is in DFx.

Suppose that ψ is labeled DEx. For i ∈ N with i > 0 and τi − τi−1 ∈ I it follows from the
induction hypothesis that ψ is in DEx, so that (P̄, τ̄, v, i − 1) |= ψ iff (D̄, τ̄, v, i − 1) |= ψ

and hence (P̄, τ̄, v, i) |=  I ψ iff (D̄, τ̄, v, i) |=  I ψ. For i > 0 with τi − τi−1 < I and
for i = 0 it follows from the definition of the operator  I that (P̄, τ̄, v, i) 6|=  I ψ and
(D̄, τ̄, v, i) 6|=  I ψ. It follows trivially that (P̄, τ̄, v, i) 6|=  I ψ iff (D̄, τ̄, v, i) 6|=  I ψ.
Therefore,  I ψ is in DEx.
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• #I ψ. This case is analogous to the previous one.

• ψ SI χ. For every formula ζ where x does not overlap with another variable in ζ and φ
is a subformula of ζ, every slicing set S ⊆ D that is valid for (D̄, τ̄) and φ, every i ∈ N,
and every valuations v with v(x) < S , let (P̄, τ̄) be the (S , x, ζ)-slice of (D̄, τ̄).

Suppose that χ is labeled DTx. It follows from the induction hypothesis that χ is in DTx,
so that (P̄, τ̄, v, i) |= χ and thus (P̄, τ̄, v, i) |= ψ SI χ. Therefore, ψ SI χ is in DTx.

Suppose that χ is labeled DFx. It follows from the induction hypothesis that χ is in DFx,
so that (P̄, τ̄, v, j) 6|= χ for all j ∈ N and thus (P̄, τ̄, v, i) 6|= ψ SI χ. Therefore, ψ SI χ is in
DFx.

Suppose that ψ and χ are labeled DEx. We show that (P̄, τ̄, v, i) |= ψSI χ iff (D̄, τ̄, v, i) |=
ψSIχ. (P̄, τ̄, v, i) |= ψSIχ iff for some j ≤ i, τi−τ j ∈ I, (P̄, τ̄, v, j) |= χ, and (P̄, τ̄, v, k) |=
ψ for all k with j < k ≤ i. It follows from the induction hypothesis and from ψ and χ
being labeled DEx that ψ and χ are in DEx. Therefore, (P̄, τ̄, v, j) |= χ iff (D̄, τ̄, v, j) |= χ

and thus (P̄, τ̄, v, k) |= ψ iff (D̄, τ̄, v, k) |= ψ. It follows that (P̄, τ̄, v, i) |= ψ SI χ iff
(D̄, τ̄, v, i) |= ψ SI χ. Therefore, the formula ψ SI χ is in DEx.

• ψ UI χ. This case is analogous to the previous one.

�

We next show that no spurious violations exist in a data slice for a formula from the sets
DE and DT. We use this result subsequently in Theorem 5.2.18 to show that in this case the
data slicer does not need to tighten the restrictions.

Lemma 5.2.17. Let ζ be a formula, x ∈ V a variable that does not overlap with another
variable in ζ, (D̄, τ̄) a temporal structure, S ⊆ D a slicing set that is valid for (D̄, τ̄), and
(P̄, τ̄) the (S , x, ζ)-slice of (D̄, τ̄). If the formula ζ is in DEx or DTx, then for all i ∈ N and all
valuations v with v(x) < S , it holds that (D̄, τ̄, v, i) |= ζ implies (P̄, τ̄, v, i) |= ζ.

Proof. If ζ is in DTx, then it follows from v(x) < S that (P̄, τ̄, v, i) |= ζ. Because the
consequence of the implication is satisfied, it follows trivially that (D̄, τ̄, v, i) |= ζ implies
(P̄, τ̄, v, i) |= ζ.

If ζ is in DEx, then it follows from v(x) < S that (P̄, τ̄, v, i) |= ζ iff (D̄, τ̄, v, i) |= ζ. �

Theorem 5.2.18. Let ζ be a formula, x ∈ V a variable that does not overlap with another
variable in ζ, (D̄, τ̄) a temporal structure, S ⊆ D a slicing set that is valid for (D̄, τ̄), and
(P̄, τ̄) the (S , x, ζ)-slice of (D̄, τ̄). If the formula ζ is in DEx or DTx, then (P̄, τ̄) is (D,T )-sound
for (D̄, τ̄) and ζ, where (D,T ) is a non-restrictive restriction.

Proof. The theorem follows directly from Lemma 5.2.17. �

Finally, we show that membership in the sets DTx, DFx, or DEx is undecidable. We first
establish Lemma 5.2.19 that we use in the undecidability proof.

Lemma 5.2.19. If a formula φ does not contain the variable x ∈ V then φ is in the set DEx.
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Proof. We proceed by induction on the structure of the formula φ. The base case consists of
the atomic formulas t ≺ t′, t ≈ t, and r(t1, . . . , tι(r)). Since φ does not contain the variable x, x
is not in {t1, . . . , tι(r)} and hence all atomic formulas can be labeled with DEx.

The step case follows straightforwardly from the fact that all atomic sub-formulas are
labeled with DEx and from the fact that, according to the labeling rules in Figure 5.1, all
operators propagate the label DEx when all their operands are labeled with DEx. Therefore, φ
can be labeled with DEx. It follows from Theorem 5.2.16 that φ is in the set DEx. �

Theorem 5.2.20 establishes undecidability of set membership. The theorem follows from
the undecidability of the tautology problem for FOTL formulas, established in Lemma 3.3.3.

Theorem 5.2.20. Given a formula φ and a variable x, it is undecidable whether φ is in the
set DTx, DFx, or DEx.

Proof. First, we show that membership in the set DTx is undecidable for an MFOTL formula
φ and a variable x ∈ V . Without loss of generality, we restrict ourselves to FOTL formulas.
Given a FOTL formula φ, we pick a variable x ∈ V that does not occur in φ and proceed by
reducing the problem of deciding whether φ is a tautology to deciding whether φ is in the set
DTx. To this end, we show that φ is a tautology iff φ ∨ true is in the set DTx.

We first show the direction from left to right. (D̄, τ̄, v, i) |=  true and hence (D̄, τ̄, v, i) |=
φ ∨ true, for every i ∈ N with i > 0, temporal structure (D̄, τ̄), and valuation v. For i = 0, it
follows from φ being a tautology that (D̄, τ̄, v, 0) |= φ and hence (D̄, τ̄, v, 0) |= φ ∨ true, for
every temporal structure (D̄, τ̄) and valuation v. Because these temporal structures include
the (S , x, ζ)-slices of any temporal structure, for all slicing sets S and all formulas ζ, and the
valuations include all valuations with v(x) < S , φ is in the set DTx.

We show the direction from right to left. That is, we show that if φ is not a tautology then
φ∨ true is not in the set DTx. From φ not being a tautology it follows that there is a temporal
structure (D̄, τ̄) and a valuation v such that (D̄, τ̄, v, 0) 6|= φ. From Lemma 5.2.19 it follows
that φ is in the set DEx. Therefore (D̄′, τ̄′, v, 0) 6|= φ, where (D̄′, τ̄′) is the (S , x, ζ)-slice of
(D̄, τ̄), for some slicing set S with S ( D and formula ζ of which φ is a subformula. Since the
variable x does not occur in φ, it follows that (D̄′, τ̄′, v[x 7→d], 0) 6|= φ, for every d ∈ D \ S .
There is at least one such value d because S ( D. From (D̄′, τ̄′, v[x 7→d], 0) 6|=  true it
follows that (D̄′, τ̄′, v[x 7→d], 0) 6|= φ ∨ true. Therefore φ ∨ true is not in the set DTx.

To show that membership in the set DFx is undecidable for an MFOTL formula φ and
a variable x ∈ V , we reduce the problem of deciding whether φ is a tautology to deciding
whether ¬(φ ∨  true) is in the set DFx, for a variable x ∈ V that does not occur in φ. The
proof is analogous to the case DTx.

Finally, we show that membership in the set DEx is undecidable for an MFOTL formula
φ and a variable x ∈ V . Without loss of generality, we restrict ourselves to FOTL formulas.
Given a FOTL formula φ, we pick a variable x ∈ V and a predicate symbol of arity 1, p ∈ R,
that are not used in φ. We proceed by reducing the problem of deciding whether φ is a
tautology to deciding whether φ ∨ p(x) ∨ true is in the set DEx.

We first show the direction from left to right. (D̄, τ̄, v, i) |=  true and hence (D̄, τ̄, v, i) |=
φ ∨ p(x) ∨  true, for every i ∈ N with i > 0, temporal structure (D̄, τ̄), and valuation
v. For i = 0, it follows from φ being a tautology that (D̄, τ̄, v, 0) |= φ, for every temporal
structure (D̄, τ̄) and valuation v. As a consequence, (D̄, τ̄, v, 0) |= φ ∨ p(x) ∨ true. Hence,
φ ∨ p(x) ∨ true is in the set DEx.
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We show the direction from right to left. That is, we show that if φ is not a tautology
then φ ∨ p(x) ∨  true is not in the set DEx. From φ not being a tautology it follows that
there is a temporal structure (D̄, τ̄) and a valuation v such that (D̄, τ̄, v, 0) 6|= φ. Let the
temporal structure (D̄′, τ̄′) be like (D̄, τ̄) except that pD0 = {d}, for some d ∈ D. It follows
that (D̄′, τ̄′, v[x 7→d], 0) |= p(x) and hence (D̄′, τ̄′, v[x 7→d], 0) |= φ ∨ p(x) ∨  true. Let
S be a slicing set with d < S . Then (D̄′′, τ̄′′, v[x 7→d], 0) 6|= p(x), where (D̄′′, τ̄′′) is the
(S , x, φ ∨ p(x) ∨ true)-slice of (D̄′, τ̄′). From Lemma 5.2.19 it follows that φ is in the set
DEx. Therefore, it follows from (D̄, τ̄, v, 0) 6|= φ that (D̄′, τ̄′, v, 0) 6|= φ and (D̄′′, τ̄′′, v, 0) 6|=
φ. From x not being used in φ it follows that (D̄′′, τ̄′′, v[x 7→d], 0) 6|= φ. Finally, from
(D̄′′, τ̄′′, v[x 7→d], 0) 6|=  true it follows that (D̄′′, τ̄′′, v[x 7→d], 0) 6|= φ ∨ p(x) ∨  true.
Since (D̄′, τ̄′, v[x 7→d], 0) |= φ∨ p(x)∨ true, but (D̄′′, τ̄′′, v[x 7→d], 0) 6|= φ∨ p(x)∨ true,
the formula φ ∨ p(x) ∨ true is not in the set DEx. �

5.3 Slicing Time

In this section, we present slicers that slice temporal structures in their temporal dimension.
We call them time slicers and they produce time slices. Formally, the temporal structure
(D̄′, τ̄′) is a time slice of the temporal structure (D̄, τ̄) if (D̄′, τ̄′) is a slice of (D̄, τ̄), where
` ∈ N ∪ {∞} and the function s : [0, `) → N are according to Definition 5.1.1 such that
rD
′
i = rDs(i) , for all r ∈ R and i ∈ [0, `).

5.3.1 Time Slicer

In the following, we slice logs by time. For a formula φ, we determine a time range of a
log that is sufficient to evaluate a formula on a single time point of the log. The time range
depends on the temporal operators and their attached intervals. The log is then split by a time
slicer into slices according to this time range. Each slice can be monitored separately and in
parallel.

We proceed as follows. In Definition 5.3.1 we show how we determine the relevant time
range for a formula. We formalize the slicing of a log by time in Definition 5.3.2 and in
Definition 5.3.3 we formalize the time slicer.

We extend the notation for intervals over N to denote intervals over Z. For example, for
b, b′ ∈ Z, [b, b′] denotes the set {a ∈ Z | b ≤ a ≤ b′} and (b, b′] denotes the set {a ∈ Z | b < a ≤
b′}. Moreover, we use the following operations, where I and J are intervals over Z:

• I d J := K, where K is the smallest interval with I ⊆ K and J ⊆ K.

• I ⊕ J := {i + j | i ∈ I and j ∈ J}.

Definition 5.3.1. The relative interval of the formula φ, RI(φ) ⊆ Z, is defined recursively over
the formula structure:

• [0, 0], if φ is an atomic formula.

• RI(ψ), if φ is of the form ¬ψ or ∃x. ψ.

• RI(ψ) d RI(χ), if φ is of the form ψ ∨ χ.
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• (−b, 0] d
(
(−b,−a] ⊕ RI(ψ)

)
, if φ is of the form  [a,b) ψ.

• [0, b) d
(
[a, b) ⊕ RI(ψ)

)
, if φ is of the form #[a,b) ψ.

• (−b, 0] d
(
(−b, 0] ⊕ RI(ψ)

)
d

(
(−b,−a] ⊕ RI(χ)

)
, if φ is of the form ψ S[a,b) χ.

• [0, b) d
(
[0, b) ⊕ RI(ψ)

)
d

(
[a, b) ⊕ RI(χ)

)
, if φ is of the form ψ U[a,b) χ.

We give intuition for Definition 5.3.1. The relative interval of φ specifies a range of
timestamps. To evaluate φ on a particular time point, it is sufficient to consider all time
point whose time stamp falls within this range. The range is relative to the timestamp of
the evaluated time point. Timestamps in the future are indicated with a positive value and
timestamps in the past are indicated with a negative value.

The intuition about the relative intervals for a formula is as follows. Atomic formulas
only depend on the current time point. Therefore, it is sufficient to consider time points
with equal timestamps. Formulas of the form ¬ψ, ∃x. ψ, and ψ ∨ χ depend only on the time
points required for their subformulas. Analogously, we only need to consider time stamps
in the intervals of the subformulas. Formulas of the form #I ψ depend on the time points
whose timestamps fall into the interval needed by the subformula ψ, shifted by the interval I.
Furthermore, the timestamp of the next time point must be the same in the time slice as in the
original log. This is ensured by considering the interval from 0 to the furthest value from 0
in I. Considering only an interval I with 0 < I would allow for additional time points to be
inserted in the time slice between the current time point and the original next time point.

The evaluation of formulas of the form ψ UI χ, with I = [a, b), depends on having the same
timestamps for the time points in the time slice as in the original log between the current time
point and the one furthest away, but with its timestamp still falling into I. This is ensured
by considering the interval [0, b). The subformula ψ is evaluated on time points between
the current time point and the furthest time point with a timestamp that falls into I, so we
need to consider the relative interval of this subformula shifted by [0, b). The subformula χ
is evaluated only on time points whose timestamps fall within the range of I, so we need to
consider the relative interval of this subformula shifted by [a, b).

Formulas of the form  I ψ and ψ SI χ, which include past operators, are treated similarly
to formulas with the corresponding future operators. However, the relative intervals are
mirrored over 0, with negative values indicating that past time points are relevant to evaluate
the formula.

Definition 5.3.2. Let (D̄, τ̄) be a temporal structure and T ⊆ Z an interval. A T -slice of
(D̄, τ̄) is a time slice (D̄′, τ̄′) of (D̄, τ̄) with ` = |{i ∈ N | τi ∈ T }|, s(i′) = i′ + c, where
c = min{i ∈ N | τi ∈ T }, D′i′ = Ds(i′), for all i′ ∈ [0, `), and τ′` < T.

Figure 5.2 illustrates Definition 5.3.2, where the original log refers to the temporal structure
(D̄, τ̄) and a T -slice of the original log to (D̄′, τ̄′). Intuitively, the first time point in a T -slice
is the first time point in (D̄, τ̄) whose timestamp is in T . In total, there are ` time points
in (D̄, τ̄) whose timestamps fall into T . All these time points are included in the T -slice
and are identical as in (D̄, τ̄). To ensure the soundness and completeness of time slices, the
(` + 1)st time point 1 in the T -slice must have a timestamp that lies outside of T , just like the
corresponding time point in (D̄, τ̄).

1Note that the index of the (` + 1)st time point is ` because we use a zero-based indexing for time points.
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Figure 5.2: Illustration of a T -slice.

Definition 5.3.3. A time slicer tφ,(Ik)k∈K
for the formula φ and family of intervals (Ik)k∈K is a

function that takes as input a temporal structure (D̄, τ̄) and a restriction (D,T ). It returns
a family of temporal structures (D̄k, τ̄k)k∈K and a family of restrictions (Dk,T k)k∈K , where
(D̄k, τ̄k) is a

(
(Ik ∩ T ) ⊕ RI(φ)

)
-slice of (D̄, τ̄) and (Dk,T k) = (D, Ik ∩ T ), for each k ∈ K.

Theorem 5.3.9 shows that a time slicer is a slicer. However, the proof needs additional
machinery to show that a time slicer satisfies the criteria (S2) and (S3) in Definition 5.1.5. We
present this machinery in the following.

We first state a definition about overlapping temporal structures and several lemmas that we
use in the proof of Theorem 5.3.9.

Definition 5.3.4. Let I ⊆ Z be an interval, c ∈ N, i ∈ N, and (D̄, τ̄) and (D̄′, τ̄′) be temporal
structures. (D̄, τ̄) and (D̄′, τ̄′) are (I, c, i)-overlapping if the following conditions hold:

1. j ≥ c, D j = D′j−c, and τ j = τ′j−c, for all j ∈ N with τ j − τi ∈ I.

2. D j′+c = D′j′ and τ j′+c = τ′j′ , for all j′ ∈ N with τ′j′ − τi ∈ I.

Intuitively, two temporal structures are (I, c, i)-overlapping if their time points (timestamps
and structures) are “the same” on an interval of timestamps. This is the case for time slices.
The value c here corresponds to the c in Definition 5.3.2. It specifies by how many time points
are the two temporal structures “shifted” relatively to each other. The interval I specifies the
timestamps for which time points must be “the same”. These are those timestamps whose
difference to the timestamp τi lies within I.

Lemma 5.3.5 establishes that time slices overlap and Lemma 5.3.6 shows that if temporal
structures overlap for an interval I, then they also overlap for other time points in I and for
sub-intervals of I.

Lemma 5.3.5. Let T ⊆ N and I ⊆ Z be intervals, (D̄, τ̄) a temporal structure, and (D̄′, τ̄′)
a (T ⊕ I)-slice of (D̄, τ̄), where c ∈ N is the value used by the s-function in Definition 5.3.2.
(D̄′, τ̄′) and (D̄, τ̄) are (I, c, i)-overlapping, for all i ∈ N with τi ∈ T.

Proof. We first show that Condition 1 in Definition 5.3.4 is satisfied. For all i ∈ N with τi ∈ T
and all j ∈ N with τ j − τi ∈ I, it holds that τ j ∈ T ⊕ I. From c = min{k ∈ N | τk ∈ T ⊕ I} in
Definition 5.3.2 it follows that j ≥ c. Let j′ := j − c. It also follows from τ j ∈ T ⊕ I that
j′ ∈ [0, `). Therefore, D j = Ds( j′) = D′j′ = D′j−c and τ j = τs( j′) = τ′j′ = τ′j−c.

Next, we show that Condition 2 is satisfied. For all i ∈ N with τi ∈ T and all j′ ∈ N with
τ′j′ − τi ∈ I, it holds that τ′j′ ∈ T ⊕ I. Since τ′` < T ⊕ I, it follows that j′ ∈ [0, `). Therefore,
D j′+c = Ds( j′) = D′j′ and τ j′+c = τs( j′) = τ′j′ . �
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Lemma 5.3.6. Let (D̄, τ̄) and (D̄′, τ̄′) be temporal structures that are (I, c, i)-overlapping, for
some I ⊆ Z, c ∈ N, and i ∈ Z. Then (D̄, τ̄) and (D̄′, τ̄′) are (K, c, k)-overlapping, for each
k ∈ N with τk − τi ∈ I and K ⊆ {τi − τk} ⊕ I.

Proof. For all j ∈ N with τ j − τk ∈ K, it follows from τ j − τk ∈ K that τ j − τk + τk − τi ∈

{τk − τi} ⊕ K and hence τ j − τi ∈ {τk − τi} ⊕ K. From the assumption K ⊆ {τi − τk} ⊕ I, it
follows that {τk − τi} ⊕ K ⊆ {τk − τi} ⊕ {τi − τk} ⊕ I = I and hence τ j − τi ∈ I. Since (D̄, τ̄)
and (D̄′, τ̄′) are (I, c, i)-overlapping, Condition 1 in Definition 5.3.4 holds for them to be
(K, c, k)-overlapping.

Similarly, for all j′ ∈ N with τ′j′ − τk ∈ K, it follows that τ′j′ − τi ∈ I and hence Condition 2
in Definition 5.3.4 holds. �

Lemma 5.3.7 establishes that 0 is included in the relative interval of every formula. This
guarantees that the satisfaction relation in Lemma 5.3.8 is defined.

Lemma 5.3.7. For every formula φ, it holds that 0 ∈ RI(φ).

Proof. We proceed by structural induction on the form of the formula φ. We have the
following cases:

• t ≺ t′, t ≈ t, and r(t1, . . . , tι(r)), where t, t′, and t1, . . . , tι(r) are variables or constants. It
follows trivially from Definition 5.3.1 that 0 ∈ RI(φ).

• ¬ψ and ∃x. ψ. It follows from the inductive hypothesis that 0 ∈ RI(ψ) and hence
0 ∈ RI(φ).

• ψ∨ χ. It follows from the inductive hypothesis that 0 ∈ RI(ψ) and 0 ∈ RI(χ). Therefore,
0 ∈ RI(ψ) d RI(χ) and hence 0 ∈ RI(φ).

•  I ψ, #I ψ, ψ SI χ, and ψ UI χ. It follows trivially from Definition 5.3.1 that 0 ∈ RI(φ).

�

Lemma 5.3.8 establishes the soundness and completeness of the slices.

Lemma 5.3.8. Let φ be a formula and (D̄, τ̄) and (D̄′, τ̄′) temporal structures. If (D̄, τ̄) and
(D̄′, τ̄′) are (RI(φ), c, i)-overlapping, for some c and i, then for all valuations v it holds that
(D̄, τ̄, v, i) |= φ iff (D̄′, τ̄′, v, i − c) |= φ.

Proof. We prove Lemma 5.3.8 by structural induction on the form of the formula φ, as the
corresponding Lemma 5.2.3. In contrast to Lemma 5.2.3, the arguments for the atomic
subformulas are trivial and the arguments for the non-atomic subformulas are complex.

Note that for all cases, (D̄′, τ̄′, v, i − c) |= φ is defined: it follows from Lemma 5.3.7 that
0 ∈ RI(φ) and from Condition 1 in Definition 5.3.4 that i ≥ c and hence i − c ∈ N. We have
the following cases:

• t ≈ t′, where t and t′ are variables or constants. Since the satisfaction of the formula
t ≈ t′ depends only on the valuation v, it follows that (D̄, τ̄, v, i) |= t ≈ t′ iff v(t) = v(t′)
iff (D̄′, τ̄′, v, i − c) |= t ≈ t′, for all valuations v.

• t ≺ t′, where t and t′ are variables or constants. This case is similar to the previous one.
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• r(t1, . . . , tι(r)) , where t1, . . . , tι(r) are variables or constants. Since (D̄, τ̄) and (D̄′, τ̄′)
are (RI(r(t1, . . . , tι(r)), c, i)-overlapping and 0 ∈ RI(r(t1, . . . , tι(r))), it also follows from
Condition 1 in Definition 5.3.4 that Di = D′i−c and hence (D̄, τ̄, v, i) |= r(t1, . . . , tι(r)) iff
(D̄′, τ̄′, v, i − c) |= r(t1, . . . , tι(r)), for all valuations v.

• ¬ψ. (D̄, τ̄) and (D̄′, τ̄′) are (RI(¬ψ), c, i)-overlapping and RI(¬ψ) = RI(ψ), so by the
inductive hypothesis we have that (D̄, τ̄, v, i) |= ψ iff (D̄′, τ̄′, v, i − c) |= ψ, for all
valuations v. It follows that (D̄, τ̄, v, i) |= ¬ψ iff (D̄′, τ̄′, v, i − c) |= ¬ψ.

• ψ ∨ χ. (D̄, τ̄) and (D̄′, τ̄′) are (RI(ψ) d RI(χ), c, i)-overlapping. From RI(ψ) ⊆ RI(ψ) d
RI(χ), RI(χ) ⊆ RI(ψ) d RI(χ), and Lemma 5.3.6 it follows that (D̄, τ̄) and (D̄′, τ̄′) are
(RI(ψ), c, i)-overlapping and (RI(ψ), c, i)-overlapping. Then by the inductive hypothesis
we know that (D̄, τ̄, v, i) |= ψ iff (D̄′, τ̄′, v, i− c) |= ψ and (D̄, τ̄, v, i) |= χ iff (D̄′, τ̄′, v, i−
c) |= χ, for all valuations v. It follows that (D̄, τ̄, v, i) |= ψ∨χ iff (D̄′, τ̄′, v, i− c) |= ψ∨χ.

• ∃x. ψ. From RI(∃x. ψ) = RI(ψ) it follows that (D̄, τ̄) and (D̄′, τ̄′) are (RI(ψ), c, i)-
overlapping. Then by the inductive hypothesis we know that (D̄, τ̄, v, i) |= ψ iff
(D̄′, τ̄′, v, i − c) |= ψ, for all valuations v. Hence, for all d ∈ D we have that
(D̄, τ̄, v[x 7→d], i) |= ψ iff (D̄′, τ̄′, v[x 7→d], i−c) |= ψ. It follows that (D̄, τ̄, v, i) |= ∃x. ψ
iff (D̄′, τ̄′, v, i − c) |= ∃x. ψ, for all valuations v.

•  [a,b) ψ. (D̄, τ̄) and (D̄′, τ̄′) are (RI( [a,b) ψ), c, i)-overlapping, where RI( [a,b) ψ) =

(−b, 0] d
(
(−b,−a] ⊕ RI(ψ)

)
.

From 0 ∈ RI( [a,b) ψ) and from Condition 1 in Definition 5.3.4 it follows that i − c ∈ N
and hence τi = τ′i−c.

We make a case split on the value of i. If i = 0, then trivially (D̄, τ̄, v, i) 6|=  [a,b) ψ,
for all valuations v. From Definition 5.3.4 it follows that c = 0 and hence i − c = 0.
Trivially, (D̄′, τ̄′, v, i − c) 6|=  [a,b) ψ, for all valuations v. Next, we consider the case
that i > 0 and make a case split on whether τi − τi−1 is included in the interval [a, b).

1. If τi − τi−1 ∈ [a, b), then τi−1 − τi ∈ RI( [a,b) ψ) and from Condition 1 in Defini-
tion 5.3.4 it follows that i − 1 ≥ c, τi−1 = τ′i−c−1, and hence τ′i−c − τ

′
i−c−1 ∈ [a, b).

From τi−τi−1 ∈ [a, b) it also follows that RI(ψ) ⊆ {τi−τi−1}⊕{τi−1−τi}⊕RI(ψ) ⊆
{τi−τi−1}⊕(−b,−a]⊕RI(ψ) ⊆ {τi−τi−1}⊕RI( [a,b) ψ) and hence by Lemma 5.3.6
(D̄, τ̄) and (D̄′, τ̄′) are (RI(ψ), c, i − 1)-overlapping. By the inductive hypothesis
we have that (D̄, τ̄, v, i − 1) |= ψ iff (D̄′, τ̄′, v, i − c − 1) |= ψ, for all valuations
v. Because τi = τ′i−c and τi−1 = τ′i−c−1, it follows that (D̄, τ̄, v, i) |=  [a,b) ψ iff
(D̄′, τ̄′, v, i − c) |=  [a,b) ψ, for all valuations v.

2. If τi − τi−1 < [a, b) then trivially (D̄, τ̄, v, i) 6|=  [a,b) ψ, for all valuations v. From
Definition 5.3.4 we know that i ≥ c. We make a case split on whether i = c or
i > c.

a) If i = c then i − c ≯ 0 and hence (D̄′, τ̄′, v, i − c) 6|=  [a,b) ψ, for all valuations
v.

b) Consider the case i > c.

To achieve a contradiction, suppose that τ′i−c − τ
′
i−c−1 ∈ [a, b). From

Condition 2 in Definition 5.3.4 it follows that τi−1 = τ′i−c−1 and hence
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τi − τi−1 = τ′i−c − τ
′
i−c−1 ∈ [a, b). This contradicts τi − τi−1 < [a, b),

so it must be the case that τ′i−c − τ
′
i−c−1 < [a, b). It trivially follows that

(D̄′, τ̄′, v, i − c) 6|=  [a,b) ψ, for all valuations v.

• #[a,b) ψ. This case is similar to the previous one. In fact, it is simpler because we do
not have to consider i = 0 and i − c = 0 as a special case.

(D̄, τ̄) and (D̄′, τ̄′) are (RI(#[a,b) ψ), c, i)-overlapping, where RI(#[a,b) ψ) = [0, b) d(
[a, b) ⊕ RI(ψ)

)
.

From 0 ∈ RI(#[a,b) ψ) and from Condition 1 in Definition 5.3.4 it follows that i − c ∈ N
and hence τi = τ′i−c. We make a case split on whether τi+1−τi is included in the interval
[a, b).

1. If τi+1 − τi ∈ [a, b) then τi+1 − τi ∈ RI(#[a,b) ψ) and from Condition 1 in Defi-
nition 5.3.4 it follows that τi+1 = τ′i−c+1 and hence τ′i−c+1 − τ

′
i−c ∈ [a, b). It also

follows from τi+1 − τi ∈ [a, b) that RI(ψ) ⊆ {τi − τi+1} ⊕ {τi+1 − τi} ⊕ RI(ψ) ⊆
{τi − τi+1} ⊕ [a, b) ⊕ RI(ψ) ⊆ {τi − τi+1} ⊕ RI(#[a,b) ψ) and hence by Lemma 5.3.6
(D̄, τ̄) and (D̄′, τ̄′) are (RI(ψ), c, i + 1)-overlapping. By the inductive hypothesis
we have that (D̄, τ̄, v, i + 1) |= ψ iff (D̄′, τ̄′, v, i − c + 1) |= ψ, for all valuations v.
From τi+1 − τi ∈ [a, b) iff τ′i−c+1 − τ

′
i−c ∈ [a, b) it follows that (D̄, τ̄, v, i) |= #[a,b) ψ

iff (D̄′, τ̄′, v, i − c) |= #[a,b) ψ. for all valuations v.

2. If τi+1 − τi < [a, b) then trivially (D̄, τ̄, v, i) 6|= #[a,b) ψ, for all valuations v.

To achieve a contradiction, suppose that τ′i−c+1 − τ
′
i−c ∈ [a, b). From Condition 2

in Definition 5.3.4 it follows that τi+1 = τ′i−c+1 and hence τi+1 − τi = τ′i−c+1 −

τ′i−c ∈ [a, b). This contradicts τi+1 − τi < [a, b), so it must be the case that
τ′i−c+1 − τ

′
i−c < [a, b). It trivially follows that (D̄′, τ̄′, v, i − c) 6|= #[a,b) ψ, for all

valuations v.

• ψS[a,b) χ. (D̄, τ̄) and (D̄′, τ̄′) are (RI(ψS[a,b) χ), c, i)-overlapping, where RI(ψS[a,b) χ) =

(−b, 0] d
(
(−b, 0] ⊕ RI(ψ)

)
d

(
(−b,−a] ⊕ RI(χ)

)
.

Note that 0 ∈ RI(ψ S[a,b) χ), so from Condition 1 in Definition 5.3.4 it follows that
i − c ∈ N and hence τi = τ′i−c. We show the following two claims, which we use later:

1. For all j ∈ N with j ≤ i and τi − τ j ∈ [a, b), it holds that RI(χ) ⊆ {τi − τ j} ⊕ {τ j −

τi} ⊕ RI(χ) ⊆ {τi − τ j} ⊕ (−b,−a] ⊕ RI(χ) ⊆ {τi − τ j} ⊕ RI(ψ S[a,b) χ) and j ≥ c.
By Lemma 5.3.6, (D̄, τ̄) and (D̄′, τ̄′) are (RI(χ), c, j)-overlapping. It follows from
the inductive hypothesis that (D̄, τ̄, v, j) |= χ iff (D̄′, τ̄′, v, j − c) |= χ, for all
valuations v.

2. For all k ∈ N with k ≤ i and τi − τk ∈ [0, b), it holds that RI(ψ) ⊆ {τi − τk} ⊕

{τk − τi} ⊕ RI(ψ) ⊆ {τi − τk} ⊕ (−b, 0] ⊕ RI(ψ) ⊆ {τi − τk} ⊕ RI(ψ S[a,b) χ) and
k ≥ c. By Lemma 5.3.6 (D̄, τ̄) and (D̄′, τ̄′) are (RI(ψ), c, k)-overlapping. It follows
from the inductive hypothesis that (D̄, τ̄, v, k) |= ψ iff (D̄′, τ̄′, v, k − c) |= ψ, for all
valuations v.

We show that for all valuations v, 1. (D̄, τ̄, v, i) |= ψ S[a,b) χ implies (D̄′, τ̄′, v, i − c) |=
ψ S[a,b) χ and 2. (D̄, τ̄, v, i) 6|= ψ S[a,b) χ implies (D̄′, τ̄′, v, i − c) 6|= ψ S[a,b) χ:
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1. If (D̄, τ̄, v, i) |= ψ S[a,b) χ then there is some j ≤ i with τi − τ j ∈ [a, b) such that
(D̄, τ̄, v, j) |= χ and (D̄, τ̄, v, k) |= ψ, for all k ∈ [ j + 1, i + 1).

From τi − τ j ∈ [a, b) it follows that τ j − τi ∈ RI(ψ S[a,b) χ) and from Condition 1
in Definition 5.3.4 we see that j ≥ c and τ j = τ′j−c. From claim 1 above and from
(D̄, τ̄, v, j) |= χ it follows that (D̄′, τ̄′, v, j − c) |= χ.

For all k′ ∈ [ j + 1 − c, i + 1 − c), it holds that τ′k′ − τ
′
i−c = τ′k′ − τi ∈ (−b, 0] and

hence τ′k′ − τi ∈ RI(ψ S[a,b) χ). From Condition 2 in Definition 5.3.4 we see that
τk′+c = τ′k′ . From claim 2 above and from (D̄, τ̄, v, k′ + c) |= ψ it follows that
(D̄′, τ̄′, v, k′) |= ψ. Therefore, (D̄′, τ̄′, v, i − c) |= ψ S[a,b) χ.

2. If (D̄, τ̄, v, i) 6|= ψ S[a,b) χ then there are two possibilities:

a) For all j ≤ i with τi − τ j ∈ [a, b) it holds that (D̄, τ̄, v, j) 6|= χ.

Then for all j′ ≤ i − c with τ′i−c − τ
′
j′ = τi − τ

′
j′ ∈ [a, b), it holds that

τ′j′ − τi ∈ RI(ψ S[a,b) χ). From Condition 2 in Definition 5.3.4 it follows that
τ′j′ = τ j′+c. That is, there are no additional time points with a timestamp
within the interval [a, b) in (D̄′, τ̄′) that would not be present in (D̄, τ̄). Since
τi − τ j′+c ∈ [a, b), it follows from claim 1 above and from (D̄, τ̄, v, j′ + c) 6|= χ

that (D̄′, τ̄′, v, j′) 6|= χ. Therefore, (D̄′, τ̄′, v, i − c) 6|= ψ S[a,b) χ.

b) For all j ≤ i with τi − τ j ∈ [a, b) and (D̄, τ̄, v, j) |= χ, there is some k ∈ N
with k ∈ [ j + 1, i + 1) and (D̄, τ̄, v, k) 6|= ψ.

Then for every j′ ∈ N with j′ ≤ i − c, τ′i−c − τ
′
j′ ∈ [a, b), and (D̄, τ̄, v, j′) |= χ,

there is a j with j = j′ + c. We show that τ′j′ = τ j and j ≤ i. From
τ′i−c − τ

′
j′ ∈ [a, b) and from τ′i−c = τi it follows that τ′j′ − τi ∈ (−b,−a] and

hence τ′j′ −τi ∈ RI(ψS[a,b) χ). From Condition 2 in Definition 5.3.4 it follows
that τ′j′ = τ j′+c = τ j. From j = j′ + c and j′ ≤ i − c it follows that j ≤ i.

Since τ′j′ = τ j and j ≤ i, we can use claim 1 above for j. From claim 1 and
from (D̄′, τ̄′, v, j − c) |= χ it follows that (D̄, τ̄, v, j) |= χ. As a consequence,
there is a k ∈ N with k ∈ [ j + 1, i + 1) and (D̄, τ̄, v, k) 6|= ψ. If follows
from k ∈ [ j + 1, i + 1) that k ≤ i. Furthermore, from τ′i−c − τ

′
j′ ∈ [a, b) it

follows that τi − τ j ∈ [a, b) and hence τi − τk ∈ [0, b). Therefore, we can use
claim 2 above for k. From claim 2 and from (D̄, τ̄, v, k) 6|= ψ it follows that
(D̄′, τ̄′, v, k−c) 6|= ψ. From k ∈ [ j+1, i+1) it follows that k−c ∈ [ j′+1, i−c+1)
and hence (D̄′, τ̄′, v, i − c) 6|= ψ S[a,b) χ.

From 1. and 2. it follows that (D̄, τ̄, v, i) |= ψ S[a,b) χ iff (D̄′, τ̄′, v, i− c) |= ψ S[a,b) χ, for
all valuations v.

• ψ U[a,b) χ. This case is analogous to the previous one.

�

Finally, we show in Theorem 5.3.9 that a time slicer is a slicer.

Theorem 5.3.9. The time slicer tφ,(Ik)k∈K
is a slicer for the formula φ if

⋃
k∈K Ik = N.

70



5.3 Slicing Time

Proof. The proof has the same structure as the proof of Theorem 5.2.5. We show that a time
slicer tφ,(Ik)k∈K

satisfies the criteria (S1)-(S3) in Definition 5.1.5 if
⋃

k∈K Ik = N and therefore
is a slicer for the formula φ.

For (S1), we show that the family (Dk,T k)k∈K fulfills the conditions (R1)–(R3) in Def-
inition 5.1.4: (R1) follows from Dk = D, for each k ∈ K. (R2) follows from

⋃
k∈K T k =⋃

k∈K(Ik ∩ T ) ⊆
⋃

k∈K T = T . (R3) follows from the assumption
⋃

k∈K Ik = N and the
equalities Dk = D and T k = Ik ∩ T , for each k ∈ K.

(S2) and (S3) follow from Lemma 5.3.5 and from Lemma 5.3.8. �

For RI(φ) that extends beyond 0, the slices must partially overlap. Since the monitor has to
inspect those overlapping parts more than once (once for each slice), we try to minimize the
overlap. This leads to a trade-off between how many slices we create (and hence how many
monitors can run in parallel) and how much overhead there is due to monitoring overlapping
time points.

So how would we split a large log into time slices? Any set of time slices that satisfies
the condition in Theorem 5.3.9 will do, but, as illustrated by Example 5.3.10, the choice can
influence the overhead of monitoring the slices.

Example 5.3.10. Consider the formula � p → �[0,15) q and assume a log, where the time-
stamps are given as days. We have that RI(p→ �[0,15) q) = (−15, 0]. To evaluate the formula
over the given log we can split the log into time slices that are equivalent with the original log
over 1-week periods. In addition to the 1-week equivalent period, each time slice includes the
14 days prior to the 1-week equivalent period. As a consequence, each time point is monitored
three times. Namely, once when monitoring the 1-week equivalent period and once in each of
the two slices when monitoring the next two week periods. If we split the log into time slices
that are equivalent with the original log over 4-weeks periods then half of the time points are
monitored once and half are monitored twice. This longer period produces less overhead for
monitoring. However, less parallelization of the monitoring process is possible as there are
less slices.

5.3.2 Filtering Time Points

After a data slicer removes tuples from the relations in a temporal structure, there may be
many time points left with just empty relations. Removing these empty time points can
noticeably speed up the monitoring. The empty-time-point filter removes such time points
(Definition 5.3.13). However, for some formulas, the filtered temporal structure is not sound
and complete. We identify a fragment of formulas for which such filtering can be safely used
(Theorem 5.3.17).

Definition 5.3.11. Let (D̄, τ̄) be a temporal structure. The time point i ∈ N is empty if rDi = ∅,
for every predicate symbol r, and non-empty otherwise.

Definition 5.3.12. The temporal structure (D̄′, τ̄′) is the empty-time-point-filtered slice of the
temporal structure (D̄, τ̄) if (D̄′, τ̄′) is a time slice of (D̄, τ̄), where ` = ∞ and s : [0, `)→ N

satisfies the following conditions:

• If (D̄, τ̄) contains finitely many non-empty time points then s is the identity function.
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• Otherwise, s is the monotonically increasing injective function such that i < {s(i′) ∈
N | i′ ∈ N} iff i is an empty time point in (D̄, τ̄), for every i ∈ N.

Note that the function s in Definition 5.3.12 is uniquely determined in both cases. We
make a case distinction in the above definition because if there are only finitely many non-
empty time points, then removing all the empty time points would result in a finite “temporal
structure,” but temporal structures are by definition infinite sequences. In practice, we monitor
always only a finite prefix of a temporal structure from which we remove the empty time
points. We assume here that the suffix of the temporal structure contains infinitely many
non-empty time points.

Definition 5.3.13. The empty-time-point filter f′φ for the formula φ is a function that takes as
input a temporal structure (D̄, τ̄) and a restriction (D,T ). It returns a family that contains
only the temporal structure (D̄′, τ̄′) and a family that contains only the restriction (D,T ),
where (D̄′, τ̄′) is the empty-time-point-filtered slice of (D̄, τ̄).

Next, we present a fragment of formulas for which the empty-time-point-filtered slice is
sound and complete with respect to the original temporal structure. See Theorem 5.3.17. To
define the fragment, we use the sets FT, FF, and FE. Membership of a formula in these sets
reflects whether the formula is satisfied at an empty time point. In a nutshell, at an empty
time point, a formula in the set FF is not satisfied, a formula in the set FT is satisfied, and the
satisfaction of a formula in the set FE is not affected by the addition or removal of empty time
points in the temporal structure.

Definition 5.3.14. The sets FT, FF, and FE are defined such that for every formula φ the
following holds:

• φ ∈ FT iff (D̄, τ̄, v, i) |= φ, for all temporal structures (D̄, τ̄), all valuations v, and all
empty time points i of (D̄, τ̄).

• φ ∈ FF iff (D̄, τ̄, v, i) 6|= φ, for all temporal structures (D̄, τ̄), all valuations v, and all
empty time points i of (D̄, τ̄).

• φ ∈ FE iff the equivalence

(D̄′, τ̄′, v, i′) |= φ iff (D̄, τ̄, v, s(i′)) |= φ

holds, for all temporal structures (D̄, τ̄) and (D̄′, τ̄′), all valuations v, and all non-empty
time points i′ of (D̄′, τ̄′), where (D̄′, τ̄′) is the empty-time-point-filtered slice of (D̄, τ̄)
and s is the function used in the filtering of (D̄, τ̄).

We approximate membership in the sets FT, FF, and FE with syntactic fragments. The
fragments are defined in terms of a labeling algorithm that assigns the labels FT, FF, and FE
to formulas. The fragments are sound but incomplete in the sense that if a formula is assigned
to a label (FT, FF, FE) then the formula is in the corresponding set (FT, FF, FE, respectively).
However, not every formula in one of the sets is assigned to the corresponding label. The
algorithm labels the atomic subformulas of a formula and propagates the labels bottom-up
to the formula’s root. It first propagates the labels FF, FT according to the labeling rules are
shown in Figure 5.3. Afterwards, it assigns the label FE according to the rules in Figure 5.4.
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r(t1, . . . , tι(r)) : FF true : FT
φ : FF
¬φ : FT

φ : FT
¬φ : FF

φ : FT
φ ∨ ψ : FT

ψ : FT
φ ∨ ψ : FT

φ : FF ψ : FF
φ ∨ ψ : FF

φ : FT
∃y. φ : FT

φ : FF
∃y. φ : FF

Figure 5.3: Labeling Rules 1 (Empty-time-point Filter)

r(t1, . . . , tι(r)) : FE t ≈ t′ : FE t ≺ t′ : FE

φ : FE
¬φ : FE

φ : FE
∃x. φ : FE

φ : FE ψ : FE
φ ∨ ψ : FE

φ : FE φ : FT ψ : FE ψ : FF
φ SI ψ : FE

φ : FE φ : FT ψ : FE ψ : FF
φ UI ψ : FE

φ : FE φ : FF
�I �J φ : FE 0 ∈ I ∩ J

φ : FE φ : FF
�I �J φ : FE 0 ∈ I ∩ J

φ : FE φ : FT
�I �J φ : FE 0 ∈ I ∩ J

φ : FE φ : FT
�I �J φ : FE 0 ∈ I ∩ J

Figure 5.4: Labeling Rules 2 (Empty-time-point Filter)

Note that syntactic sugar must be unfolded before applying the rules. We use the expression
φ : ` as shorthand for the formula φ being labeled with the label `. We show the soundness of
our labeling rules in Theorem 5.3.15.

Theorem 5.3.15. For all formulas φ, if the derivation rules shown in Figures 5.3 and 5.4
assign the label FT, FF, or FE to φ then φ is in the set FT, FF, or FE, respectively.

Proof. We first show the soundness of the rules assigning the labels FT and FF. We proceed
by induction on the size of the derivation tree assigning label ` to formula φ. We make a case
distinction based on the rules applied to label the formula, that is, the rule at the tree’s root.
However, for clarity, we generally group cases by the formula’s form.

For readability, and without loss of generality, we already fix the temporal structure (D̄, τ̄),
a time point i ∈ N, and a valuation v.

A formula r(t1, . . . , tr(l)) is labeled FF. If i is an empty time point in D then clearly
(D̄, τ̄, v, i) 6|= r(t1, . . . , tr(l)).

The formula true is labeled FT. Trivially, (D̄, τ̄, v, i) |= true.
The other rules propagate the assigned label through the non-temporal operators. The

correctness of these rules can be seen by plugging the true and false values into the semantic
definitions of these operators.
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Next, we show the soundness of the rules assigning the label FE. Again, we proceed by
induction on the size of the derivation tree assigning label FE to formula φ. We make a case
distinction based on the rules applied to label the formula, that is, the rule at the tree’s root.
However, for clarity, we generally group cases by the formula’s form.

For every valuation v and i′ ∈ N, the evaluation of the formulas r(t1, . . . , tr(l)), t ≈ t′, and
t ≺ t′ only depends on the current time point and hence they are in FE. The other rules not
involving temporal operators depend only on the value of their subformulas at the current
time point. If the subformulas are labeled with FE, then by the induction hypothesis the
subformulas are in FE, so the formula is also in FE.

For readability, and without loss of generality, we already fix the temporal structure (D̄, τ̄)
and its empty-time-point-filtered slice (D̄′, τ̄′). The proof is trivial for the case where s is the
identity function. In the rest of the proof, we assume that (D̄, τ̄) has infinitely many non-empty
time points and hence s is not the identity function.

For the remaining rules we show separately that, for every valuation v and i′ ∈ N,

1. (D̄′, τ̄′, v, i′) |= φ implies (D̄, τ̄, v, s(i′)) |= φ, and

2. (D̄, τ̄, v, s(i′)) |= φ implies (D̄′, τ̄′, v, i′) |= φ

• φ SI ψ:

1. (D̄′, τ̄′, v, i′) |= φ SI ψ implies (D̄, τ̄, v, s(i′)) |= φ SI ψ

From (D̄′, τ̄′, v, i′) |= φSIψwe know that there is a j′ ≤ i′ such that τ′i′−τ
′
j′ ∈ I and

(D̄′, τ̄′, v, j′) |= ψ and, for every k′ with j′ < k′ ≤ i′, we have that (D̄′, τ̄′, v, k′) |=
φ.

Since ψ is labeled FE, it follows from the induction hypothesis that ψ is in FE and
hence (D̄, τ̄, v, s( j′)) |= ψ. For each k with s( j′) < k ≤ s(i′) either k is an empty or
a non-empty time point in (D̄, τ̄). If it is an empty time point then from φ being
labeled FT and hence in FT we know that (D̄, τ̄, v, k) |= φ. If it is a non-empty time
point then we know that there is a time point k′ in (D̄′, τ̄′) with j′ < k′ ≤ i′ and
k = s(k′). From φ being labeled FE and hence in FE we know that (D̄, τ̄, v, k) |= φ.
In both cases (D̄, τ̄, v, k) |= φ and therefore (D̄, τ̄, v, s(i′)) |= φ SI ψ.

2. (D̄, τ̄, v, s(i′)) |= φ SI ψ implies (D̄′, τ̄′, v, i′) |= φ SI ψ

From (D̄, τ̄, v, s(i′)) |= φ SI ψ it follows that there is a j ≤ s(i′) with τs(i′) − τ j ∈ I
and (D̄, τ̄, v, j) |= ψ, and that, for every k with j < k ≤ s(i′), we have that
(D̄, τ̄, v, k) |= φ.

Since (D̄, τ̄, v, j) |= ψ and ψ is labeled FF, so that ψ is in FF, we know that j
cannot be an empty time point in (D̄, τ̄). Therefore, there is a j′ such that j = s( j′).
We have that j′ ≤ i′ because s is monotonically increasing. From ψ being labeled
FE it follows that ψ is in FE and hence (D̄, τ̄, v, j) |= ψ implies (D̄′, τ̄′, v, j′) |= ψ.

Furthermore, for every k′ with j′ < k′ ≤ i′ there is a corresponding time point k in
(D̄, τ̄) such that k = s(k′). As s is a monotonously increasing function we have
that s( j′) < k ≤ s(i′). From (D̄, τ̄, v, s(i′)) |= φ SI ψ it follows that (D̄, τ̄, v, k) |= φ.
From φ being labeled FE it follows that φ is in FE and hence (D̄′, τ̄′, v, k′) |= φ.
Therefore, (D̄, τ̄, v, s(i′)) |= φ SI ψ.
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• φ UI ψ: This case is similar to φ SI ψ.

• �I �J φ and �I �J φ with 0 ∈ I ∩ J:

Note that this formula can be rewritten to �I φ ∨ �J φ, which can be labeled with the
rules proven above.

• �I �J φ and �J �I φ with 0 ∈ I ∩ J:

Note that this formula can be rewritten to �J φ ∧ �I φ, which can be labeled with the
rules proven above.

�

Lemma 5.3.16 establishes the soundness and completeness of an empty-time-point-filtered
slice for formulas that are in both sets FE and FT.

Lemma 5.3.16. Let φ be a formula in the intersection of FE and FT, (D̄, τ̄) a temporal
structure, and (D̄′, τ̄′) the empty-time-point-filtered slice of (D̄, τ̄)). (D̄′, τ̄′) is (D,T )-sound
and (D,T )-complete for (D̄, τ̄, v, 0) and φ, where (D,T ) is a non-restrictive restriction.

Proof. We first show soundness. That is, for all valuations v and timestamps t ∈ N, it holds
that (D̄, τ̄, v, i) |= φ, for all i ∈ N with τi = t, implies (D̄′, τ̄′, v, i′) |= φ, for all i′ ∈ N with
τ′i′ = t. We first show that (D̄, τ̄, v, 0) |= � φ ⇒ (D̄′, τ̄′, v, 0) |= � φ. From (D̄, τ̄, v, i) |= φ it
follows that for all i it holds that (D̄, τ̄, v, i) |= φ.

As s is a function we know that for all time points i′ in (D̄′, τ̄′) there is a time point i in
(D̄, τ̄) such that i = s(i′) and τi = τ′i′ . From φ being in FE and from (D̄, τ̄, v, i) |= φ it follows
that (D̄′, τ̄′, v, i′) |= φ.

We continue by showing completeness. That is, for all valuations v and timestamps t ∈ N,
it holds that (D̄, τ̄, v, i) 6|= φ, for some i ∈ N with τi = t, implies (D̄′, τ̄′, v, i′) 6|= φ, for some
i′ ∈ N with τ′i′ = t.

Each time point i in (D̄, τ̄) is either empty or non-empty. If it is empty, then from φ being in
FT we know that (D̄, τ̄, v, i) |= φ. If it is non-empty then there exists a time point i′ in (D̄′, τ̄′)
such that i = s(i′) and τi = τ′i′ . From φ being in FE and from (D̄, τ̄, v, i) 6|= φ it follows that
(D̄′, τ̄′, v, i′) 6|= φ. �

Theorem 5.3.17. The empty-time-point filter f′φ is a slicer for the formula φ if the formula φ
is in both FE and FT.

Proof. We show that the empty-time-point filter satisfies the criteria (S1)-(S3) in Defini-
tion 5.1.5 and therefore is a slicer. (S1) follows trivially because the filter does not modify the
restriction (D,T ). (S2) and (S3) follow directly from Lemma 5.3.16.

�

It follows from Theorem 5.3.15 and from Theorem 5.3.17 that the empty-time-point filter
is a slicer for all formulas that can be labeled with FE and FT.

The empty-time-point filter is implemented in the monitoring tool MONPOLY. The tool
checks whether the monitored formula can be labeled with FE and FT and if so, then it applies
the filter to the input temporal structure by default unless disabled by command line flags.
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6 The Google Case Study

In this chapter, we describe our deployment of compliance monitoring based on log slicing
in a case study with Google. We first explain the scenario, the monitored policies, and the
logging and monitoring setup. Afterwards, we present our experimental results.

6.1 Setting

Scenario. In our case study, we consider a setting of over 35,000 computers that are used
both within Google while connected directly to the corporate network and outside of Google,
accessing Google’s network from remote unsecured networks. These computers are used to
access other computers and sensitive resources.

To minimize the risk of unauthorized access to sensitive resources, access control mecha-
nisms are used. In particular, computers must obtain authentication tokens via a tool, which
we refer to as AUTH. The validity of the token is limited in time. Furthermore, the Secure
Shell protocol (SSH) is used to remotely login into other computers. Additionally, to mini-
mize the risk of security exploits, computers must regularly update their configuration and
apply security patches according to a centrally managed configuration. To achieve this, every
computer regularly starts an update tool, which we refer to as UPD, connects to the central
server to download the latest centrally managed configuration, and attempts to reconfigure
and update itself. To prevent over-burdening the configuration server, if the computer has
successfully updated its configuration recently then the update tool UPD aborts and does not
attempt a connection to the server.

Policies. We give below a set of policies specifying restrictions on the authorization process,
SSH sessions, and the update process. Afterwards, we formalize them in MFOTL. The
computers in our case study are intended to comply with these policies. However, due to
misconfiguration, server outages, hardware failures, etc. this is not always the case. The
policies are as follows:

P1: Entering the credentials with the tool AUTH must take at least 1 second. The motivation
is that authentication with the tool AUTH must not be automated. That is, the authen-
tication credentials must be entered manually and not by a script when executing the
tool.

P2: The tool AUTH may only be used if the computer has been updated to the latest centrally-
managed configuration within the last 3 days.

P3: SSH session must not last longer than 24 hours. The motivation is that long-running
SSH sessions present a security risk.
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P4: Each computer must be updated at least once every 3 days unless it is turned off or not
connected to the corporate network.

P5: If a computer connects to the central configuration server and downloads the new
configuration, then it must successfully reconfigure itself within the next 30 minutes.

P6: If the tool UPD aborts the update process claiming that the computer was successfully
updated recently, then there must have been a successful update within the last 24 hours.

Formalization. We formalize the above policies in MFOTL. The signature contains the
predicate symbols alive, net, upd start, upd connect, upd success, upd skip, auth, ssh login,
and ssh logout. Their interpretations at a time point in a temporal structure are as follows:

• alive(c : string): The computer c is running. This event is generated at least once every
20 minutes when the computer c is running. For busy computers, we limit this to at
most 2 events every 5 minutes.

• net(c : string): The computer c is connected to the corporate network. This event
is generated at least once every 20 minutes when the computer c is connected to the
corporate network. For busy computers, we rate limit this event to at most 1 every 5
minutes.

• auth(c : string, t : integer): The tool AUTH is invoked to obtain an authentication token
on the computer c. The second argument t indicates the time in milliseconds it took the
user to enter the authentication credentials.

• upd start(c : string): The tool UPD started on the computer c.

• upd connect(c : string): The tool UPD on the computer c connected to the central
server and downloaded the latest configuration.

• upd success(c : string): The tool UPD successfully updated the local configuration and
applied security patches on the computer c.

• upd skip(c : string): The tool UPD on the computer c terminated because it believes
that the computer was successfully updated recently.

• ssh login(c : string, s : string): An SSH session with identifier s to the computer c was
opened. We use the session identifier s to match the login event with the corresponding
logout event.

• ssh logout(c : string, s : string): An SSH session with identifier s to the computer c
was closed.

Our formalization of the policies is shown in Table 6.1. We explain the less obvious
aspects of the formalization. We use the variable c to represent a computer, the variable s
to represent an SSH session, and the variable t to represent the time it takes a user the enter
authentication credentials. In the policy P3, we assume that if a computer is disconnected
from the corporate network, then the SSH session is closed. In the policy P4, because of the
subformula �[1d,2d] alive(c) we only consider computers that have recently been used. This
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Table 6.1: Policy formalizations in MFOTL
Policy MFOTL formalization
P1 �∀c.∀t. auth(c, t)→ 1000 ≺ t
P2 �∀c.∀t. auth(c, t)→ �[0,3d] �[0,0] upd success(c)

P3
�∀c.∀s. ssh login(c, s)∧(

�[1min,20min] net(c) ∧ �[0,1d] �[0,0] net(c)→ �[1min,20min] net(c)
)
→

�[0,1d) �[0,0] ssh logout(c, s)

P4
�∀c. net(c) ∧

(
�[10min,20min] net(c)

)
∧(

�[1d,2d] alive(c)
)
∧ ¬

(
�[0,3d] �[0,0] upd success(c)

)
→

�[0,20min) �[0,0] upd connect(c)

P5
�∀c. upd connect(c) ∧

(
�[5min,20min] alive(c)

)
→

�[0,30min) �[0,0] upd success(c) ∨ upd skip(c)
P6 �∀c. upd skip(c)→ �[0,1d] �[0,0] upd success(c)

is an approximation to not consider newly installed computers. Similarly, we only require
an update of a computer if it is connected to the network for a certain amount of time. In the
policy P5, since computers can be turned off after downloading the latest configuration but
before modifying its local configuration, we only require a successful update if the computer
is still running in 5 to 20 minutes after downloading the new configuration from the central
server.

The actions performed by the different computers are logged with a timestamp recording
when the actions happened. If actions are logged by different computers with the same
timestamp, then we do not know the relative ordering of these actions. However, we do not
care about the actual ordering of such actions and express this by including the operators
�[0,0], �[0,0], and �[0,0] in the formalization of the policies. This makes the formulas collapse-

sufficient (see Section 3.4), that is, all possible orderings of actions logged with an equal
timestamp either all satisfy or all violate a policy. We monitor the policies on a collapsed
temporal structure (see Definition 3.2.2), that is, on a temporal structure where structures with
an equal timestamp are merged into a single structure. This allows us to omit the operators
�[0,0], �[0,0], and �[0,0] from the formulas that we actually monitor.

The monitored formulas representing the policies P1 to P6 fall within the fragment of
MFOTL that the tool MONPOLY handles. After removing the leading � operator and
making the variable c a free variable, all formulas can be labeled with FE, FT, and DTc (see
Sections 5.3.2 and 5.2.3 for details about the labels). Therefore, filtering empty time points
and slicing on the variable c do not introduce any spurious violations that would need to be
removed from the monitor output in a post-processing step.

Note that in the policy P1 we use the constant symbol 1000. Since its corresponding value,
namely 1,000 ms, does not represent a computer identifier, the slicing carrier sets need not
contain this value.

Logs. The relevant computers log locally and upload their logs to a log cluster. These logs
consist of entries describing the system events that occurred. Every day, approximately 1 TB
of log data is uploaded. Due to their sizes, the logs are stored in a distributed file system
spread across a large number of physical computers. In our case study, we restricted ourselves
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Table 6.2: Log statistics by log event
Event Count
alive 16 billion (15,912,852,267)
net 8 billion (7,807,707,082)
auth 8 million (7,926,789)
upd start 65 million (65,458,956)
upd connect 46 million (45,869,101)
upd success 32 million (31,618,594)
upd skip 6 million (5,960,195)
ssh login 1 billion (1,114,022,780)
ssh logout 1 billion (1,047,892,209)

to log data that spans approximately two years. Furthermore, the logs also contain entries that
are irrelevant for our policies.

We processed the logs to obtain a temporal structure that consists of the events relevant
for our policies. We used regular expression matching to find log entries for extracting the
corresponding interpretations of the predicate symbols at each time point in the temporal
structure. For example, to determine the elements c in the relations for the predicate symbol
alive, we considered every logged entry of the computer c and extracted at most two of them
every five minutes for the computer c.

To account for the fact that the events are carried out in a concurrent setting, we collapsed
the extracted temporal structure. The collapsed temporal structure contains approximately
77.2 million time points and 26 billion log events, that is, tuples in the relations interpreting the
predicate symbols. A breakdown of the numbers of logged events in the collapsed temporal
structure by predicate symbols is presented in Table 6.2. The collapsed temporal structure
encoded in a protocol buffer format [Goo13] amounts to approximately 600 MB per day on
average and to 0.4 TB for the two years. Protocol buffer formats are widely used within
Google and well-supported by the infrastructure that we used.

6.2 Monitoring Setup

We first motivate why a MapReduce framework is suitable to implement our monitoring setup.
Afterwards, we describe and evaluate our implementation.

We have not considered other parallelization frameworks beyond MapReduce because
MapReduce’s performance was sufficient for monitoring the logs in this case study. A
comparison of the performance of various frameworks for the parallelization of computations
is beyond the scope of this article.

Why MapReduce? The logs are too large to be reasonably stored and processed on a single
computer. They are stored in a distributed file system where their content is spread across
multiple physical computers.

Although we could write a script to split the log into slices and start monitoring processes
for the different slices on different computers, existing MapReduce frameworks like Hadoop
or the one we used in our case study at Google [DG04] offer several advantages over such a
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manual approach. A MapReduce framework automatically allocates the monitoring tasks to
different machines, restarts failed tasks, and speculatively starts tasks on multiple computers
in order to minimize the time until all tasks complete. It also attempts to minimize the fetching
of data over the network by allocating tasks to computers on which the required data is already
present.

However, the main advantage of MapReduce frameworks is efficient shuffling, that is,
transferring the output of the mappers to the correct reducers and sorting the data for each
reducer. We use the shuffling to rearrange how the temporal structure is split when it is stored
across multiple computers. Given the size of the log data, we assume that it is initially stored
in a distributed file system and spread across multiple computers. The way it is distributed
might not correspond to the way that we want to slice the extracted temporal structure. Even
if the initial distribution corresponds to one slicing method, different policies may require
different slicing methods. We use the sorting in the shuffling phase to ensure that the slices
are sorted by timestamps. This is a prerequisite for the correctness of the MFOTL monitoring
algorithm.

We use the mappers in MapReduce to split the temporal structure into slices and we use
the reducers to check the slices for compliance with the policies. This allows us to reap the
benefits of the shuffling phase between map and reduce.

Realization. To monitor the temporal structure, obtained from logged data as described
in Section 6.1, for checking compliance with the policies, we used the MONPOLY
tool [BHKZ12] together with Google’s MapReduce framework [DG04]. For each policy, we
used 1,000 computers for slicing and monitoring. We split the temporal structure into 10,000
slices so that each computer had to process 10 slices on average. The decision of using a
magnitude more slices than computers follows the recommendation of making the individual
map and reduce computations small. In particular, if the monitoring of a slice fails and has to
be restarted, less computational power has been wasted.

We implemented only data slicing by the variable c. With Definition 5.2.1 we obtain a
method for constructing the slices in a straight-forward way. Namely, for each time point in
the original temporal structure, iterate through the tuples in the relations interpreting predicate
symbols and copy only those tuples that satisfy conditions specified in Definition 5.2.1. The
other slicing methods can be implemented in a similar way.

Instead of listing the members of the slicing sets explicitly, we provide a function mapping
every interpretation of the variable c to a slicing set. Each slicing set is identified by a natural
number between 0 and 9,999. The function applies a variant of the MurmurHash [Wik13]
hash function to the variable interpretation, which is a computer identifier, and takes the
remainder after division by the desired number of slices. This function leads to a relatively
even distribution of the size of slices, as shown in Figure 6.1. Since the slices obtained in this
way were sufficient for our purposes, we did not implement other slicing methods, such as
slicing by time.

We explain our use of the MapReduce framework in more detail. The mappers split the
relations of the temporal structure into data slices by the variable c and output each element
of a relation as a separate structure along with two keys. The primary key indicates the log
slice and the secondary key contains the timestamp.

During the shuffling phase, the output of the mappers is passed to the reducers. Because
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we use the primary key to identify a slice, for each slice, a reducer receives all structures of
the slice. The structures are sorted by the timestamp because we use the timestamp as the
secondary key.

The reducer collapses the received temporal structure. That is, it merges all structures with
the same timestamp into a single structure. Since the structures are already sorted by the
timestamp, this can be done in time linear in the slice’s length. For each slice, a reducer starts
a MONPOLY instance in a child process. It converts the collapsed temporal structure into
the MONPOLY format on the fly and pipes it into the MONPOLY process in one thread. In
another thread, it reads the output of the MONPOLY process and returns it as the output of
the reducer.

Note that due to the way we implemented slicing, empty time points are filtered out from the
slices. To further improve efficiency, the MONPOLY tool additionally filters out “irrelevant”
tuples with a data filter and any subsequent empty time points with the empty-time-point
filter. As explained in Section 6.1, the filtering and slicing does not introduce any spurious
violations that must be removed from the monitor output in a post-processing step.

The output of the reducers in our monitoring setup with MapReduce contains the actual
policy violations. Those can be fed into various auditing and monitoring dashboards. They
can also be further processed to generate alerts based on statistical anomaly detection or
predefined limits, such as on the number of detected violations per time unit.

6.3 Evaluation

We evaluate our monitoring approach to show that it is feasible to check compliance of large
IT systems and that our monitoring approach scales to large logs. In particular, each of the
policies in Table 6.1 could be monitored within 12 hours on logs as large as 0.4 TB. In the
following, we provide details about the distribution of the size of the slices and how the
monitoring tool MONPOLY performed.

Figure 6.1 shows the distribution of the size of log slices in the MONPOLY format used
as input for the monitoring tool MONPOLY. On the y-axis is the percentage of slices whose
size is smaller or equal to the value on the x-axis. From the figure, we see that the log volume
is rather evenly distributed among the slices. The median size of a slice is 61 MB and 90%
of the slices have a size of at most 94 MB (93% of at most 100 MB and 99% of at most 135
MB). There are three slices with sizes over 1GB and the largest slice is 1.8 GB. The total log
volume, that is the sum of the sizes of all slices, is 626.6 GB. Note that we used the same
slicing method for all policies.

Note that the sum of the size of all slices (0.6 TB) is larger than the size of the collapsed
temporal structure (0.4 TB). Since we slice by the computer (variable c), the slices do not
overlap. However, some overhead results from timestamps and predicate symbol names being
replicated in multiple slices. Furthermore, we consider the size of the collapsed temporal
structure in a protocol buffer format and the size of the slices in the more verbose text-based
MONPOLY format.

In Table 6.3 we show the time it took to monitor each policy using our monitoring setup. 1

For most policies, the monitoring took up to two and a half hours. Monitoring the policy P3

1This is the time for the whole MapReduce job. That is, from starting the MapReduce job until the monitor on
the last slice has finished and its output has been collected by the corresponding reducer.
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Figure 6.1: Distribution of the size of log slices in MONPOLY format

Table 6.3: Monitor performance
Policy Runtime [hh:mm]
P1 2:04
P2 2:10
P3 11:56
P4 2:32
P5 2:28
P6 2:13

took almost 12 hours.
We first discuss the time it took to monitor the different slices and then how much memory

the monitoring tool used. Table 6.4 presents details about the monitoring of the individual
slices. For the policy P3, Figure 6.2 shows on the y-axis the percentage of slices for which the
monitoring time is within the limit on the x-axis. Curves for the other policies are not shown
as they are almost identical to P3. The almost identical curves indicate that for most slices
the monitoring time does not differ across policies. Independently of the monitored policy,
the median time to monitor a slice is around 3 minutes, 90% of the slices can be monitored
within 5 minutes each (99% within 8.2 minutes), and the sum of the time to monitor each
slice is between 21 and 23 days. However, there is a difference in monitoring the few large
slices. For each policy except for P3, the maximum time to monitor a slice is between 46
minutes and 66 minutes. For policy P3, 30 slices took longer than one hour to monitor each
with the largest 1.8 GB slice taking almost 11 hours. An additional burden of policy P3 is the
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Table 6.4: Monitor performance per slice
Policy Runtime Memory used

median max sum median max
[sec] [hh:mm] [days] [MB] [MB]

P1 169 0:46 21.4 6.1 6.1
P2 170 0:51 21.4 6.1 10.3
P3 170 10:40 22.7 7.1 510.2
P4 169 1:06 21.3 9.2 13.1
P5 168 1:01 21.3 6.1 6.1
P6 168 0:48 21.1 6.1 7.1

nesting of multiple temporal operators, in particular three of them. This burden exhibits itself
especially on the large slices.

Independently of the monitored policies, the median amount of memory needed by the
monitoring tool is between 6 MB and 10 MB and 90% of the slices do not require more than
14 MB (99% are within 35 MB). For all policies except for P3, the monitor never needed
more than 13 MB of memory. The few large slices present outliers for the policy P3, where
memory usage grew up to 510 MB. As Figure 6.3 demonstrates these outliers represent a very
small proportion of the slices.

From the analysis of the time it took to monitor the individual slices, we see that we end
up waiting for a few “stragglers,” that is, slices that take significantly longer to monitor than
other slices. There are several options to deal with these slices. We can stop the monitor
after a timeout and ignore the slice and any policy violations on the slice. Note that the
monitoring of the other slices and the validity of violations found on them would not be
affected. Alternatively, we can split the large slice into smaller slices, either in advance before
we start monitoring or after a timeout when monitoring the large slice. For policy P3, we can
slice further by the variable c. As the formalization of the policy P3 can be labeled DTs we
can also slice by the variable s. Finally, we can slice by time.

Given the sheer size of the logs, the time spent monitoring them is reasonable. After
implementing a solution to deal with the stragglers, even faster monitoring times can be
achieved by using more computers for monitoring. In our setup, every computer monitored ten
slices on average. We could increase the number of computers tenfold so that each computer
would monitor only a single slice. For even larger logs and more computers available to do
the monitoring, we could further increase the number of possible slices by doing both slicing
by data on the variable c and slicing by time. The MapReduce framework makes it trivial to
add more computers.

Due to the sensitive nature of the logs, we do not report on the detected violations of the
monitored policies. However, we remark that monitoring a large population of computers
and aggregating the violations found by the monitor can be used to identify systematic policy
violations as well as policy violations due to reconfiguring the system setup. An example
of the former is not letting a computer update after the weekend before using it to access
sensitive resources on Monday (policy P2). As an example of the latter, the monitoring turned
out to be helpful in determining when the update process was not operating as expected for
certain type of computers during a specific time period. This information can be helpful for

84



6.3 Evaluation

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10  12

C
u

m
u

la
ti
v
e

 p
e

rc
e

n
ta

g
e

 o
f 

s
lic

e
s

MONPOLY took up to [minutes] to check the slice for policy compliance

Figure 6.2: Distribution of time to monitor individual slices for policy P3
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identifying seemingly unrelated changes in the configuration of other components in the IT
infrastructure.
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Temporal logics have been widely used to formalize and analyze security and privacy policies.
For example, Zhang et al. [ZPPSP05] formalize the UCONABC model [PS04] for usage control
in the temporal logic of actions [Lam94]. The Obligation Specification Language, presented
by Hilty et al. [HPB+07], includes temporal operators. Barth et al. [BDMN06] present a
framework for specifying privacy policies in a first-order temporal logic and DeYoung et
al. [DGJ+10] show how parts of the HIPAA and GLBA policies can be formalized in this
framework. The focus of these works is primarily on formalizing policies whereas we focus
on monitoring compliance with policies, in particular on logs containing concurrently logged
actions and on handling large amounts of log data.

Based on formally specified policies, various algorithms have been presented for monitoring
system behavior with a single monitor [DJLS08,GHS10,BGHS10,HV12,BKMP08,BHKZ12].
However, these approaches cannot directly monitor concurrently logged actions and they do
not scale to large logs due to a lack of parallelization. We discuss related work that addresses
these two issues in the following two sections.

7.1 Monitoring Concurrently Logged Actions

In this section, we discuss work related to monitoring concurrently logged actions.
A broader overview on the state of the art of monitoring distributed systems can be found in

the survey by Goodloe and Pike [GP10]. Sen et al. [SVAR04] present a distributed monitoring
approach, where multiple monitors which communicate with each other are implemented
locally. The authors use a propositional past linear-time distributed temporal logic with
epistemic operators [Ram96] that reflect the local knowledge of a process. The semantics
of temporal operators in this logic is defined with respect to a partial ordering, the causal
ordering [Lam78] commonly used in distributed systems. Their logic therefore does not allow
one to express temporal constraints on events that are not causally related. Policies are defined
with respect to the local view point of a single process and checked with respect to these view
points, using the last known states of other processes. Thus two processes can reach different
verdicts as to whether a property is satisfied or violated. This is in contrast to our approach
where the semantics of the temporal operators is defined with respect to a total ordering and
a single central monitor determines whether a global property holds. In addition, note that
distributed monitoring entails communication overhead between the monitors whereas we
must merge distributed logs.

Genon et al. [GMM06] present a monitoring algorithm for propositional LTL, where events
are partially ordered. Whereas we restrict ourselves to formulas for which monitoring a single
interleaving is sufficient, their approach checks a formula on all interleavings using symbolic
exploration methods. These methods can decrease the number of interleavings considered but,
in the worst case, exponentially many must still be examined. Furthermore, it is unclear how
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their algorithm for the propositional setting extends to a timed and first-order setting.
Wang et al. [WASL12] consider a problem similar to that of Genon et al. [GMM06]. Their

monitoring algorithm for past-only propositional LTL with a three-valued semantics explicitly
explores the possible interleavings of a partially ordered trace. Matching our notion of strong
violations (Definition 3.1.2(2)), their algorithm returns the truth value false only if the formula
is violated on all interleavings. However, their algorithm is not complete in the sense that
it might return an inconclusive answer, represented as the third truth value, although all
possible interleavings violate the given formula. The third truth value is also returned if
some interleavings violate the formula and others satisfy it. Note that in our approach, the
formulas in the syntactically-defined fragments either satisfy all interleavings or violate all
interleavings.

Several monitoring approaches [BF12, BLS06, ZSLL09] have been proposed where actions
logged with equal timestamps are considered to happen simultaneously. This corresponds
to defining their semantics with respect to the collapsed log in our setting and thereby
restricting the expressiveness of the policy specification language. Therefore different possible
interleavings need not be considered and the monitoring can be more efficient. We discuss
these approaches in more detail below.

Bauer et al. [BLS06] assume a setting where the observed system actions are totally
ordered, thereby abstracting away distributivity and concurrency. In their setting, system
requirements are given in a propositional linear-time temporal logic. Their monitoring
architecture additionally includes a component that analyzes the cause of a failure, which is
fed back into the system.

Bauer and Falcone [BF12] assume a distributed system with synchronized clocks where
observations of the system are done simultaneously in lock-step. This leads to a totally ordered
trace of system actions, which corresponds to the collapsed log in our setting. They present a
distributed monitoring algorithm for propositional future linear-time temporal logic where
monitors are distributed throughout the system and exchange partially evaluated formulas
between each other. Each monitor evaluates the subformulas for which it can observe the
relevant system actions. Note that their monitoring algorithm is based on rewriting of formulas
so, technically speaking, partially rewritten formulas are exchanged.

Zhou et al. [ZSLL09] present a distributed monitoring framework aimed at monitoring
properties of network protocols. They check the properties against a totally ordered log with
exactly one time point per timestamp. Again, this corresponds to the collapsed log in our
setting. Instead of using a temporal logic to specify properties, they rely on a Datalog-like
language with additional support for temporal constraints. The monitors are executed together
with the network protocols.

Mazurkiewicz traces [DR95] provide an abstract view on partially ordered logs. With this
view, the problem of checking whether a policy is strongly violated on a partially ordered log
can be stated as checking whether all linearizations of a Mazurkiewicz trace satisfy a temporal
property. We are not aware of any work that solves this problem by inspecting a single
sequence representing all linearizations. In Mazurkiewicz traces, an independence relation on
actions specifies which actions can be reordered. This is independent of the timestamps of
actions, whereas in our setting the possibility of reordering depends on the timestamp and not
the action.

Also related to our work is partial-order reduction [Pel98]. Partial-order techniques aim
at reducing the number of interleavings that are sufficient for checking whether a temporal
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property is satisfied on all possible interleavings. Partial-order reduction techniques have
successfully been used in finite-state model checking where one checks all possible system
executions. In contrast, we check compliance of all linearizations of a single observed system
execution. Nevertheless, our approach for the interleaving-sufficient fragment can be seen as
a special case of partial-order reduction. Namely, we restrict the logical formulas so that it is
sufficient to inspect a single interleaving to determine compliance of all possible interleavings.
For the collapse-sufficient fragment, we additionally compress the inspected interleaving.

7.2 Monitoring Large Logs

In this section, we discuss work related to monitoring log slices.
Similar to our approach, Barre et al. [BKSB+13] monitor logs with a MapReduce framework.

While we split the log into multiple slices and evaluate the whole formula on these slices in
parallel in a single MapReduce job, they evaluate the given formula in multiple iterations of
MapReduce. All subformulas of the same depth are evaluated in the same MapReduce job and
the results are used to evaluate subformulas of a lower depth during another MapReduce job.
The evaluation of a subformula is performed in both the Map and the Reduce phase. While
the evaluation in the Map phase is parallelized for different time points of the log, the results
of the Map phase for a subformula for the whole log are collected and processed in a single
reducer. Therefore, the reducer becomes a bottleneck and the scalability of their approach
remains unclear. Furthermore, their case study with a log consisting of less than five million
log tuples, monitored on a single computer, is rather small and does not clarify the scalability
of their approach. Finally, they evaluated their approach only for a propositional temporal
logic, which is limited in expressing realistic policies.

Roşu and Chen [RC12] present a general extension for different property specification
languages and associated monitoring algorithms where logged events have parameters. Con-
sidering log slices based on these parameters allows them to monitor parts of a log in parallel
and independently of the other log parts. For monitoring, the log with events containing
parameters is split into slices, with one slice for each parameter value in case of a single
parameter, and one slice for each combination of values for different parameters in case
multiple parameters are used. The slices are processed by the original monitoring algorithm
unaware of parameters. In contrast to our work, they do not use a MapReduce framework.
Neither do they explain how their monitoring approach can be implemented to run in parallel.
We note that a parametric extension of a propositional temporal logic is less expressive than a
first-order extension, such as MFOTL used in our work. Roşu and Chen also describe a case
study with up to 155 million log events, all monitored on a single computer. This is orders of
magnitude smaller than the log monitored in the Google case study.

Since most IT systems are distributed, actions corresponding to the logged events are
initiated and carried out locally, that is, by their system components. As a consequence, logs
are generated distributively. We collect the logged events and redistribute them to the monitors
such that each monitor obtains the necessary events. In contrast, the monitoring approaches
presented by Sen et al. [SVAR04], Bauer and Falcone [BF12], and Zhou et al. [ZSLL09]
directly monitor the system components and their monitors communicate their observations.
These approaches work in an online setting and the communication is needed because not
every monitor necessarily observes all log events that it needs to evaluate the policy. In
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contrast, our approach is restricted to an offline setting and we use the MapReduce framework
to provide each monitor with the necessary log events. As a result of the communication in
these approaches, one slow monitor can slow down all other monitors. This is in contrast to
our approach, where different slices can be monitored independently and at different speeds.
Furthermore, it remains unclear how the communicating monitors cope with a monitor that
crashes. In our approach, a crashed monitor is automatically restarted by the MapReduce
framework. We already discussed these three approaches [SVAR04, BF12, ZSLL09] in more
detail in Section 7.1.

Instead of formalizing policies in a temporal logic and using dedicated monitoring algo-
rithms for checking system compliance, one can use SQL-like languages to express policies as
database queries and evaluate the queries with a database managements system (DBMS). Tech-
niques used to parallelize the evaluation of such queries in parallel DBMSs, see [DG92,OV11],
are related our work. In the terminology of the DBMS community [OV11], the slicing of
logs can be seen as horizontal fragmentation, that is, partitioning the data in a database table
by rows of the table. Monitoring log slices in parallel for compliance with a single formula
corresponds to intra-query parallelism in DBMSs, that is, evaluating a query in parallel on
multiple computers. Here, two orthogonal techniques are used in parallel DBMSs: intra-
operator and inter-operator parallelism. With intra-operator parallelism, the same operator is
evaluated in parallel on subsets of the data. With inter-operator parallelism, different operators
are evaluated in parallel. The monitoring of slices corresponds to intra-operator parallelism.
Inter-operator parallelism in our setting would correspond to evaluating different subformulas
of the monitored formula in parallel, similar to the approach of Barre et al. [BKSB+13], but
we evaluate the whole formula in parallel on different log slices. In contrast to DBMSs, the
results of evaluating a formula on different slices can easily be combined by concatenating
them, as long as the restrictions corresponding to the slices do not overlap. DBMSs use more
complex algorithms [DG85] to merge the results of evaluating the join operator on subsets of
the data. The underlying reason for this is that we choose the slices in a way that is suitable
for the monitored formula. On the contrary, the “slicing” in DBMSs is chosen independently
of the evaluated query and the database is not “re-sliced” before evaluating other queries.

We have restricted ourselves to compliance checking in an offline setting. One of the reasons
for this restriction is that the MapReduce framework is inherently offline: the Reduce phase
can start only after all mappers have finished processing all of their inputs. Several techniques
overcome this limitation. For instance, Condie et al. [CCA+10] present an extension of
MapReduce where the reducers process the output of mappers while the mappers are still
running. It needs to be further investigated whether such extensions of MapReduce allow
for a scalable deployment of our monitoring approach in an online setting. Note that only
data slicing can be used in an online setting, time slicing is inherently restricted to an offline
setting.

In the context of an online setting, a disadvantage of DBMSs is their inherent restriction to
an offline setting: they must first import the complete data set before they can evaluate any
queries on it. This restriction of DBMSs is overcome by complex event processing systems.
These systems continuously evaluate queries expressed in SQL-like languages [ABW06]
on rapidly evolving data streams in an online setting. We refer to [CM12] for a survey on
complex event processing. Since the specification languages employed by these systems are
not based on temporal logics, a direct comparison is difficult and it remains to be seen if and
how we can benefit from work in this domain.
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8 Conclusion

We conclude this thesis with a summary of our main results and a discussion of directions for
future work.

8.1 Summary

We presented a scalable solution to monitor security policies in concurrent distributed systems.
The main obstacle is that these systems provide only partially ordered logs. We showed the
intractability of monitoring an arbitrary linear-time temporal logic formula on such logs and
we overcame this obstacle by identifying two fragments, which can be monitored efficiently by
inspecting a single, representative totally ordered log. We also showed that the semantically-
defined properties of a formula are undecidable and we approximated them with sound, but
incomplete, syntactically-defined fragments.

The scalability of our solution to monitor large logs is rooted in parallelizing the monitoring
process, for which we provide a theoretical framework and an algorithmic realization within
the MapReduce framework. The MapReduce framework is particularly well suited for
parallelizing the monitoring process: First, it allows us to efficiently reorganize a huge log
into slices. Second, it allocates and distributes the computations for monitoring the slices,
accounting for the available computational resources, the location of the logged data, failures,
and so on. Third, additional computers can easily be added to speedup the monitoring process
when splitting the log into more slices, thereby increasing the degree of parallelization.

We deployed and evaluated our monitoring approach in real-world applications. Our two
case studies demonstrate the feasibility and benefits of monitoring security policies, and the
usage of sensitive data in particular. While a single monitor could cope with the volume of
logs in the Nokia case study, the Google case study shows the scalability of our solution for
monitoring large logs. The case studies also show that the identified fragments are sufficiently
rich to capture real-world policies. Intuitively, this is because one naturally formulates policies
that are insensitive to the ordering of concurrently logged actions when their actual ordering
cannot be determined easily.

A major practical challenge in deploying our monitoring solution in the case studies was
the lack of accurate and reliable logging mechanisms. The underlying cause for this is that
the systems were not originally designed to log in sufficient detail the system actions that are
relevant for the monitored policies.

8.2 Future Work

Our solution for monitoring concurrently logged actions focuses on detecting strong policy
violations, that is those violations which occur on all possible log interleavings. It falls short
for detecting weak policy violations, that is those violations which occur on at least one, but
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not necessarily all possible log interleaving. Our solution is based only on analyzing the policy
formalization, but not the logs themselves. Although a similar technique could identify policy
formalizations for which there exists a set of logs whose interleaving violates the policy, it
remains as future work to develop techniques that determine whether the actual monitored set
of logs allows for such a violating interleaving.

As observed in the Google case study, slices that take significantly different amounts of
time to monitor unnecessarily prolong the total time needed to check policy compliance. It
remains as future work to exploit and evaluate the possibilities to obtain a larger number of
smaller slices that are equally expensive to monitor. Either heuristics can be used before the
monitoring starts, for example, based on the size of the log slices. Alternatively, we could
stop the monitoring of a slice after a time-out period, reslice this slice into smaller slices and
monitor the smaller slices in parallel. Since our theoretical framework allows one to slice in
multiple dimensions by composing different slicing methods, a different slicing method can
be used for the reslicing.

It also remains open how to utilize and extend the framework for obtaining a scalable
solution for checking system compliance online and for enforcing policies, that is, preventing
policy violations rather than just detecting them.
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