SNMP Traffic Measurement and Analysis
Seminar Report for Networks and Distributed Systems
Seminar

Matus Harvan

Spring Semester 2006

Abstract

The Simple Network Management Protocol (SNMP) is widely deployed to moni-
tor, control, and configure network elements. Even though the SNMP technology is
well documented and understood, it remains relatively unclear how SNMP is used
in practice and what the typical SNMP usage patterns are. This report describes
tools developed to analyze SNMP traces in order to develop a better understanding
of how SNMP is used in real world production networks.

1 Introduction

The Simple Network Management Protocol (SNMP) is widely deployed to monitor, control,
and configure network elements. However, it is not clear which features are being used,
how SNMP usage differs in different types of networks or organizations, which information
is frequently queried, and what typical SNMP interaction patterns are in real world pro-
duction networks. Several publications deal with the performance of SNMP in general [7],
the impact of SNMPv3 security [4, 3|, or the relative performance of SNMP compared to
Web Services [9, 8]. Although these papers are useful to better understand the impact of
various design decisions, some of them lack experimental evidence or comparisons and are
based only on assumed SNMP interaction patterns. There are many speculations about
the usage and performance of SNMP in real world production networks, but to date no
systematic measurements have been published.

Many authors use the ifTable of the IF-MIB [6] or the tcpConnTable of the TCP-MIB
[12] as a starting point for their analysis and comparison. Despite the fact that there is no
evidence that operations on these tables dominate SNMP traffic, it is even more unclear
how these tables are read and which optimizations are done (or not done) by real world
applications. It is also unclear what the actual traffic trade-off between periodic polling and
more aperiodic data retrieval is. Furthermore, we do not generally understand how much
traffic is devoted to standardized MIB objects and how much traffic deals with proprietary
MIB objects and whether the operation mix differs between these object classes or between
different operational environments.

An effort to collect SNMP traffic traces in order to find answers to some of these
questions, tools developed for that purpose and preliminary results are described in [10].
This report deals with some of the more specialized tools developed to further analyze
SNMP with focus on functionality developed and work done within the Networks and
Distributed Systems seminar.

2 snmpdump

SNMP traces are usually captured using tcpdump and stored in pcap format. In order
to analyze them, a conversion tool called snmpdump has already earlier been developed
by Jirgen Schonwalder. It reads raw pcap files and converts them into XML and CSV
formats. These formats are more convenient for further analysis, where simpler programs
or scripts can be used. The CSV and XML formats are described in more details in [13].
The formats may change as development progresses. Output in pcap format is not possible
with snmpdump. Some work on the snmpdump program has been done within the scope of
the seminar and will be secribed in mre detail.

2.1 XML input

As the XML format retains all information contained in the raw pcap trace, it is possible
to use also XML format as input to snmpdump instead of the pcap format. The module for
reading XML as input has been developed as part of the seminar.

The xmlreader API from the 1ibxml library has been used. Compared to other pos-
sibilities, this approach resulted in a O(1) memory consumption. Other approaches had
memory consumption dependent on the length of the input and hence did not scale well
to large traces. It should be noted that traces in the order of 100GB have been collected
at one site and as snmpdump is expected to cope with such large traces, the xmlreader
approach was chosen.

The xmlreader offers basic XML syntax checking. A user-defined function is called
on every XML node (opening, closing, value inside), so the higher level work requiring
knowledge of the XML schema for the particular document has to be done outside the
libxml library. This, however, does not require to keep track of much state information
as the names used in the XML schema are unique, allowing to determine where within the
document a node or element belongs. Due to not keeping the state information, checking
of well-formedness of the document has not been implemented. In other words, the input
XML is not verified against the XML schema and hence the behavior of snmpdump on
non-well-formed input is undefined. However, it is assumed that mostly XML produced
by snmpdump itself would be used as input, so it should be well-formed. It should be
noted that the checking of well-formedness could be implemented without increasing the
memory requirements, but has not been considered significant enough to be worth major
implementation efforts. The CSV format contains less information than the original pcap
trace and hence cannot be used as input for snmpdump.

2.2 Invalid checksums

It has been noticed that in some traces used for testing during implementation, only
response packets have been present in the output of snmpdump, in both XML and CSV
formats. The pcap trace used as input, however, contained both, request and response
packets. The reason for leaving out the request packets turned out to be broken UDP
checksums on all request packets. It should be noted that snmpdump uses the libnids
library for reassembly of fragmented packets. This library is ignoring packets with incorrect
checksums, which explains why these packets have not shown up in the output of snmpdump.

The problem with invalid checksums was further investigated. If traffic traces have
been captured on Linux systems with checksum offloading on the network card, where
traces were captured on one of the communication endpoints (i.e. hosts on which traffic
originates) then outgoing UDP packets have been observed to contain invalid checksums.
This was caused by the fact that the packet was sent from the kernel to the networking card
without calculating the checksum, as the networking card was taking care of calculating
the right checksum. The packets, however, have been captured in the kernel rather than
after leaving the networking card and hence contained incorrect checksums. A possible

solution is to turn off checksum offloading using the ethtool command. This, however,
may noticeably increase system load on fast networks. The problem with invalid checksums
was not observed on another Linux host using a networking card not capable of checksum
offloading.

Another possible solution could be correcting the checksums directly in the pcap file.
A rather simple C program could be used for that purpose. The disadvantage would be
that if there really have been corrupted packets on the network, one would correct also
their checksums.

A similar problem with checksums has been observed if the communication takes place
completely within a single host, i.e. on the local interface. For this case, no workaround
has been found.

2.3 libanon

One of the problems involved with analyzing SNMP is obtaining real world production
network traces a researcher could analyze. Traces produced by the researcher himself can
be useful for testing the implementation, but do not yield an insight into the usage and
behavior of SNMP in large production networks. Management traffic naturally contains
sensitive information and hence operators may be reluctant to provide traces. A possible
argument in persuasion of a hesitant network operator might be the availability of trace
anonymization. To address this issue, snmpdump supports filtering out specified values,
i.e. removing sensitive information and anonymization, i.e. transformation of values to
other values, but not complete removal of values. For filtering out, regular expressions
are used to select message fields. For anonymization, a library libanon has previously
been developed. This library is capable of lexicographical-order-preserving anonymization
of the various data types involved in SNMP traces such as integers, octet strings, MAC
addresses or IP addresses. For IP addresses, a prefix- and lexicographical-order-preserving
anonymization is used [5]. Due to the way SNMP logical operations, such as table retrievals
(table walks), were designed to retrieve data in lexicographical order, the anonymization of
a trace needs to preserve the lexicographical ordering to enable analysis of logical operations
in the anonymized trace. Although the library has already been developed previously,
some work has still been done on it within the seminar. It should be noted that the
anonymization implemented in snmpdump is not yet complete.

The libanon library is based on Crypto-pAN, a prefix-preserving IP address anonymiza-
tion scheme. From there, the representation of an IPv4 address as a 32-bit integer was
inherited. While the 1ibanon library has been integrated into the snmpdump tool, the 32-
bit integer representing an IPv4 address was replaced by a more standard representation,
in_addr_t. This, however, is stored in network byte order, whereas the previous represen-
tation relied on host byte order. During the initial change this significant difference was
overlooked. Only later was the library found to produce incorrect results and it was time
consuming to pinpoint the cause. This was fixed and should bring better portability across
architectures with different byte ordering. A similar problem occurred and was fixed for
IPv6 addresses, where the initial representation was an array of integers in host byte order.

4

This was replaced by struct in6_addr, which uses network byte order.

The problems with the byte ordering led to creation of test cases and their inclusion into
the repository. To motivate testing after changes are done to libanon, a shell script was
written to check the library’s compliance with the test cases for IP address anonymization.
This is done by comparing output for known input with expected output that is known
to be correct. Unfortunately, such approach, is not directly possible for other data types
as their anonymization algorithm involves randomness and hence different runs of the
algorithm produce different output even for the same input. Testing for these data types
would require setting up a more sophisticated testing framework than simply comparing
output with known good output.

Another issue that turned out during integration with snmpdump was the need for
paraphrase support. The IP anonymization algorithm uses the AES encryption algorithm,
where an encryption key needs to be set. As no randomness is involved, knowledge of
the key could be used to weaken the anonymization. The previous approach was to hard
code the key in the source code. As the software is open-source and distributed in source
form, every operator or trace provider wishing to anonymize a trace before giving it away
would be expected to modify the key in the source. A probable outcome would be that the
key would not be changed, effectively defeating the purpose of anonymization. Therefore,
libanon was changed to provide support for specifying a passphrase instead of the key
directly in the source code. The encryption key is then produced from the passphrase
using the SHA-1 hashing algorithm. The support for passphrase was used in snmpdump to
enable the user easily supply his own passphrase on the command line. If no passphrase is
supplied, a random key is used.

Further work on the library included writing a man page for the MAC address anonymiza-
tion functions. Functions for some of the other data types still remain without a man page.

3 Analysis scripts

The snmpdump tool takes care of converting traces from mainly pcap format to XML or
CSV formats. Optionally, sensitive information can be filtered out or anonymized. After
the traces are converted, they can be analyzed. Several Perl scripts have been developed
for this purpose and will be discussed in more detail. All of these scripts operate on the
CSV format. They have been used to analyze the SNMP traces from networking lab at
the International University Bremen. Results from this analysis are presented as well.

3.1 Basic statistics

Previously, a Perl script snmpstats.pl has been written for basic statistics. It reports how
often which SNMP versions, protocol operations have been used, the number of varbinds
in packets and message size distributions.

3.2 Object Identifier statistics

The snmpstats.pl script was modified to count which OIDs are used in varbinds and how
often. While parsing the input, a hash table for each operation is used to relate OIDs
to the number of times they have occurred (separately for different protocol operations).
After the input parsing is finished, information from hash tables is summarized and used to
create a table showing how often was which OID used. Statistics are displayed separately
for each protocol operation.

The OIDs, as seen in packets, consist of an OID prefix and a suffix. It makes much
more sense to consider only the OID prefixes and aggregate by them. For this purpose, a
script called snmpobjectstat.pl was written. It uses the OID table from snmpstats.pl’s
output to produce an aggregation by OID prefixes. In order to gain MIB knowledge, the
smidump utility with option -f identifiers was used to create a file with known object
identifiers from various MIB modules. This file is read in by the snmpobjectstat.pl script
and stored in a hash table. Only following types are used:

e scalar
e column
e notification

The script then looks up the longest matching prefix for each OID from snmpstats.pl’s
output in the information supplied by smidump. The lookup is performed by cutting away
the last number from the OID and trying to match a key in the hash table of known OIDs
(from smidump). This is repeated until either a prefix is matched or the OID only consists
of one numeral. The latter means no matching prefix was found for given OID. Afterwards,
aggregation is done using the prefixes only. The output is enriched by names of matched
OID, to be more useful to humans reading the reports. OIDs, for which no prefix was
found are reported as well. One could then try find MIBs for these OIDs and rerun the
scripts.

Initially, the OID prefix lookup was performed in snmpstat.pl whenever an OID was
read from the input. Hence, the same OID was looked up several times. This indeed turned
out to slow down the processing significantly. Therefore, complete OIDs are stored in a
hash table while snmpstat.pl is running and the lookup is then done only once for each
OID when snmpobjectstats.pl is run.

For the netlab traces, the most used OIDs have been ifType, ifOperStatus, ifDescr,
ifAdminStatus, ifInOctets, ifOutOctets, ifHCInOctets, ifHCOutOctets and sysUpTime.

3.3 General purpose OID lookup

The lookup of names for OIDa, which was a side effect of the snmpobjectstat.pl script
turned out to be very convenient for analysis of OID usage. This has inspired a general
purpose script for doing just OID name lookup, the snmpoidlookup.pl script. It uses the
information from smidump,but includes also rows and tables. The script looks for OIDs

6

in standard input (using the regular expression /~\d(\.\d+)+$/). For each OID it finds,
the longest prefix matching it is looked up, using the same strategy as implemented in
snmpobjectstat.pl. Then the matched numerical prefix value is replaced with the name,
while the suffix is kept. In this way no information is lost, but for OIDs where at least
some MIB knowledge exists, the name is looked up. The modified input is then sent to
standard output. Text not looking as OID is passed through unchanged. This is useful
for reports of other scripts, where only numerical OID values are contained. These reports
can simply be piped through this script to produce more meaningful reports.

One particular problem with the simple replacing is if the string length of the numerical
OID prefix and the corresponding name do not match. This leads to white space formatting
problems in reports from other scripts. A possible improvement would be to consume/add
white space as possible, but so far the formatting problem has not been severe enough to
incite implementation of such an improvement.

3.4 Walks

Rather than looking at protocol operations, it may bring more insight to study logical
operations. Omne such operation is table retrieval (aka table traversal, aka table walk).
It is described in detail and with examples in [11]. In this report table traversal will be
referred to as a (table) walk. A walk is defined as a sequence of get-next/response or get-
bulk/response operations. A mixture of get-next and get-bulk requests is not considered
a walk. OIDs in the requests for the same varbind index (corresponding to the same table
column) are increasing lexicographically and have the same OID prefix. This prefix is
obtained from the first request within the walk. A request may have OID lexicographically
lower than the one in previous response in case of table holes. A walk is ended if a
response contains OID prefix different from the one in the initial request for all varbinds.
Some columns may be shorter than others, but the walk ends when we reach the end of
the longest column rather than the shortest one. Therefore, the prefix has to be different
for all columns.

For SNMP version 1 get-next requests are used, while from version 2c get-bulk requests
can be used. With a get-bulk request, a maximum number of repetitions is set in the
request. In this way, it may be possible to retrieve several elements from a different table
or column. These elements would have a different OID prefix. With max-repetitions
greater than one, there could be a significant portion of the reply consisting of such not
desired OIDs. These will be referred to as overshoot. Information about these overshoot
elements is not desired by the command generator and hence one could argue transmitting
such information is useless. As the walk has to be ended by a response with OID out of
the prefix, there always is overshoot of at least 1 for properly ended walks. Please note
that for get-next walks the overshoot is always trivially 1.

With the presented definition of a walk in mind, the snmpwalks.pl scripts was designed.
It detects walks and collects statistics about them, such as

e length of the walk in terms of packets

e number of interactions within the walks (number of requests)
e OID prefix(es) starting the walk

e number of non-repeaters and repeaters — these are heuristically determined also for
get-next walks

e number of repetitions in responses
e number of varbinds in responses
e overshoot

The sum of number of varbinds in all responses in a walk provides a measure for the
amount of information retrieved via a walk. Similarly, the number of repetitions could be
used.

Due to incomplete trace files, it may be possible to observe a walk being started, but
not being finished. The response packet with the overshoot OIDs could simply be missing.
Such a walk would then not be properly closed. As the script tries to match any new
packet to an open walk, having too many open walks would hurt performance. Therefore,
using a command line switch, timeout value can be set after which open walks for which
there was no packet within the specified period would be timed-out, i.e. closed forcibly
and put into a separate bin of timed-out walks.

A walk with one iteration only (1 request, 1 response) is considered a degenerated walk.
Such walks seem to be produced by scli, where get-next requests are used for retrieving
single values. Although this approach may have advantages in the scli case, it is not
considered a proper walk in the context of the snmpwalks.pl script. Besides general
statistics on the number of packets, number of open, closed and timed-out walks,...the
script produces several tables. For all tables, only properly closed walks are considered.
The first three tables will be referred to as Table 1, 2 and 3. Table 1 shows for each closed
walk the type (get-next or get-bulk), number of interactions, repetitors, non-repetitors,
cumulative number of repetitions and response varbinds, duration of the walk (time of last
packet minus time of first packet) and the overshoot. Table 2 is similar to Table 1, but
shows information based on OIDs starting the walks. Each row in the table corresponds
to one OID. Table 3 shows information for groups of OIDS as they have been used to start
walks (e.g. in case multiple columns of a table are retrieved in parallel). From this table, it
is possible to infer which pieces of information were retrieved together, i.e. as a table. The
information in each table is sorted by the cumulative number of repetitions so that the
“largest” walks would come first. After the tables a histogram of overshoots is produced.

Using a command line switch it is possible to obtain more detailed information about
each walk. Furthermore, it is possible to write packets (in CSV format) belonging to each
walk into a separate file. Walks are assigned unique names, which make it possible to use
information from the summary report produced by the script to look for details within a
particular walk, i.e. an example would the walk with the longest duration or the walk with
the largest overshoot.

It has been observed that net-snmp’s snmptable utility starts a get-bulk walk by ap-
pending a .0 to the table OID when using protocol version 2c. In order to detect such
walks properly and make them fit our definition, the script strips off the trailing .0 (and
prints a warning to standard error).

For the netlab trace, 54% of all the packets (2 539 574 out of 4 699 906) belong to
properly closed walks. One could hence assume that walks constitute a significant portion
of the SNMP traffic, at least in our networking lab. The trace contains a negligible number
of open walks. These are probably the result of stopping the capturing process while some
walks were still in progress. The largest walk contains 139 iterations, which corresponds
to 278 response varbinds for the whole walk. As could be guessed from the numbers,
there have been 2 repetitors. The groups of OIDs starting walks with largest number of
repetitions (summed up for all walks with this group of OIDs) have been

e ifDescr

e ifType

e ifOperStatus
e ifAdminStatus

As no get-bulk walks are taking place in the networking lab, only trivial overshoots of
1 have been observed.

As further work, the walks script could be able to distinguish between various walking
strategies. Such strategies, however, need to be defined first.

3.5 Frequency analysis

It is assumed that SNMP is often used for regular polling of devices. Therefore, the
question of looking for regular interval polling has been approached. Clearly, it does not
make sense to look at the arrival times of single packets. A logical operation like a table
walk performed every five minutes would have a lot of packets exchanged in millisecond
intervals and then for 5 minutes there would be quiet. Instead, arrival times of packets
starting logical operations would be more useful. For this reason the snmpwalks.pl script is
capable of putting packets starting logical operations into a separate file. The arrival times
of these packets can then be used as timestamps for the beginning of logical operations.
Packets starting logical operations are considered to be

e packets starting walks (get-next, get-bulk)
e request packets not belonging to walks (get-request)

The result of the this is basically a timeseries, in which regular patterns are seeked.
The first approach was to inspect the time series in frequency domain. As outlined in [1],
simple FFT on packet arrival times should already give hints on regularity. However, in

0.35 M T T T T T T T - T
+++ "tmp/freq2" using 1:2 +
*
T
+
03| % .
i
+
+
T
+
+
025 - + -
+
+
+
+
+
02T +ﬁ++++%ﬁ+++ﬂ+ 1
o+ g=
+++ + *
y *
F ++ T
0.15 4 i 3 -
e + Y
1 + +++
T
+++ ++ +++
01 I~ ++ ++ +++ -
* + i
+ - *
+ t +
v T
* L L T
0.05 - ++++ #++++++# ++++ ﬁﬁ*ﬂ A #¢+++ l 7]
* i H H
+++ ++#++ et #%ﬁjiiﬁf%+ - i ,i#% +++¢* ++ﬁ++#++++ ¥
04 .
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

Figure 1: FFT of the start times of logical operations in the trace xen-br-e0

order to be able to do FFT, the time series has to first be sampled at regular time intervals.
Afterwards, the GNU Octave was used to compute FFT of the trace. This, however, did
not produce useful results. A plot of the FFT can be found in Figure 1. The values for
the peaks correspond to approximately

Frequency | Period
0.0013 19.3m
0.00285 8.8m
0.00440 5.7m
0.00665 3.8m

However, there are doubts to the correctness of the frequency values on the x-axis. Fur-
thermore, a simple test case with a packet every 5 seconds produced a completely useless
frequency plot. This is probably because taking Fourier Transform of an impulse train is
not such a good idea. The values obtained with the FFT as regular intervals for the netlab
trace would seem reasonable. Checking the configuration of nagios and cacti in the lab,
where this trace was captured, it turned out that the intervals should be 5 or 3 minutes.
Nevertheless, the FFT method was not producing reliable results and the reasonably look-

10

ing values are attributed to coincidence. Besides that, computing the FFT seemed to be
rather computationally intensive.

Another paper suggests using Discrete Fourier Transform of the autocorrelation [2].
Therefore, autocorrelation was attempted with GNU Octave. It worked correctly for
the simple test case and already seemed to suggest some regular interval pattern for the
trace.However, the problem with both methods was that the processing time in GNU Oc-
tave was very long. For the autocorrelation, only very small lags were requested to be
computed. Otherwise, the computation would run for hours, until it would be killed as
probably not leading anywhere in reasonable time. As the autocorrelation results seem
reasonable in general and worked for a simple test case with a few packets (as opposed
to FFT), the idea of autocorrelation was implemented in yet another Perl script called
snmpreg.pl. The time series data is sampled with an interval of 5 seconds. A hash table
mapping time to number of packets is used. Empty time slots with no packets are not put
into the hash table and hence do not occupy memory. For each time slot with packets,
it’s distance to other time slots with packets is added to another hash table. This hash
table maps the distance between time slots with packets to a measure of number of packets
in these time slots. At the moment, for every two timeslots distance t apart, the value ¢
maps to is increased by the minimum number of packets in the two time slots. The dis-
tance corresponds to a candidate time interval for regular polling. Only distances within
the range of 5 seconds to 12 minutes are considered in the analysis script. The reason is
that smaller or larger values were not expected for the traces from the lab and limiting
the distance enbaled to decrease runtime. The script runs significantly faster than the
autocorrelation or FFT approaches with GNU Octave. Furthermore, it seems to produce
correct results. In the trace it has found a regular interval of 5 minutes, as can be seen in
Figure 2. This corresponds to the configuration of SNMP managers in the networking lab,
where the analyzed trace was captured.

The script, as it is so far, shows that this approach is feasible to analyze regular SNMP
traffic. The metric for measuring amount of regularity could be improved to indicate how
much of the traffic follows each of the regular intervals. Furthermore, multiples of the
fundamental interval could maybe be removed. If the script could detect peaks rather
than just produce plots and rely on a human to find the relevant peaks, it could be used
for several traces and then summarize results with another script. It may be easier to
analyze single flows [10] between managers and agents rather than having them mixed
together in one trace. As there could be a huge number of flows in a trace, automating the
peak detection would be crucial.

3.6 Runtime

All the Perl scripts presented in the section run in less than 10 minutes on the largest netlab
trace, which contains 4 699 906 packets and takes 466 MB in pcap format. Machine on
which this was tested has an Intel Xeon 3GHz CPU. The runtime and memory consumption
seem acceptable and the scripts are expected to scale well to larger traces.

11

1le+06

900000

800000

700000

600000

500000

400000

300000

200000

100000

T T T
"xen-br-e0.csv-reg" using 1:2 —

i

1.2e+06

1e+06

800000

600000

400000

200000

200

400

600 800

(a) xen-br-e0

1000

1200

1400

1600

b |

T T T
"xen-br-el.csv-reg" using 1:2 —

il

0 200

400

600 800

(b) xen-br-el

1000

1200

1400

1600

Figure 2: Detection of regular intervals between logical operations. The x-axis is the length
in seconds of the interval between logical operations. Y’axis measures of how regular this

4 Related Work

Similar analysis scripts, but in Java rather than Perl, are being written by Jorrit Schip-
pers [10].

The performance of SNMP is discussed in several recent papers, like [7, 4, 3, 9, 8]. This
work is complementary as it aims at providing empirical data about the usage of SNMP
in production networks. Such data is needed to design realistic scenarios and models for
evaluating SNMP performance and comparing it to other network management protocols.

5 Conclusion

Several tools for analysis of SNMP traces have been developed or new functionality has
been added to existing tools. These improvement include reading XML format as input
with the snmpdump tool besides the pcap format. Furthermore, statistics collection about
OIDs, detection and analysis of table walks and regularities in SNMP traces has been
enabled. The improvements and new analysis scripts have been tested on traces from
the netowrk lab at International University Bremen. Contrary to the conclusion of other
reserchers, FFT was not found useful in detection of regularities.

13

References

1]

2]

[10]

[11]

[12]

[13]

Yu Chen, Kai Hwang, and Yu-Kwong Kwok. Filtering of shrew ddos attacks in fre-
quency domain. In LCN, pages 786793, 2005.

Chen-Mou Cheng, H.T. Kung, and Koan-Sin Tan. Use of spectral analysis in defense
against dos attacks. In Proceedings of the IEEE GLOBECOM, 2002.

A. Corrente and L. Tura. Security performance analysis of snmpv3 with respect to sn-
mpv2c. In Proc. 2004 IEEE/IFIP Network Operations and Management Symposium,
pages 729-742, Apr. 2004.

X. Du, M. Shayman, and M. Rozenblit. Implementation and performance analysis
of snmp on a tls/tcp base. In Proc. 7th IFIP/IEEE International Symposium on
Integrated Network Management, pages 453-466, May 2001.

Matus Harvan and Jiirgen Schonwaelder. Prefix- and lexicographical-order-preserving
ip address anonymization. In IEEE/IFIP Network Operations and Management Sym-
posium NOMS 2006, April 2006.

K. McCloghrie and F. Kastenholz. The Interfaces Group MIB. RFC 2863 (Draft
Standard), June 2000.

C. Pattinson. A study of the behaviour of the simple network management proto-
col. In Proc. 12th IFIP/IEEE Workshop on Distributed Systems: Operations and
Management, Oct. 2001.

G. Pavlou, P. Flegkas, S. Gouveris, and A. Liotta. On management technologies and
the potential of web services. 42:58-66, July 2004.

A. Pras, T. Drevers, R. van de Meent, and D. Quartel. Comparing the performance
of SNMP and web services based management. 1, Nov. 2004.

Aiko Pras and Jiirgen Schonwalder. Snmp traffic analysis. submitted to INM, May
2006.

R. Presuhn. Version 2 of the Protocol Operations for the Simple Network Management
Protocol (SNMP). RFC 3416 (Standard), December 2002.

R. Raghunarayan. Management Information Base for the Transmission Control Pro-
tocol (TCP). RFC 4022 (Proposed Standard), March 2005.

J. Schonwalder. SNMP Traffic Measurements. Internet Draft <draft-schoenw-nrmg-
snmp-measure-00.txt>, International University Bremen, May 2006.

14

