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Abstract

A 6lowpan implementation for the TinyOS 2.0 embedded operating system has
been developed. It supports the 6lowpan adaptation layer with handling of the
Fragmentation, Mesh Addressing and Broadcast headers. The 6lowpan-specified
HC1 compression of the IPv6 header and the HC UDP compression of the UDP
header are supported as well as handling of the uncompressed headers. Although
not all requirements for a full IPv6 stack are implemented, the implementation
can respond to ICMP echo requests and handles communication over the UDP
protocol. It has been tested on the TelosB and MicaZ hardware platforms.
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Chapter 1

Introduction

Wireless sensor networks consist of numerous tiny nodes equipped with various
sensors and a radio interface for communication. Among the applications are
environment monitoring such as forest fire detection and water or air quality
monitoring, wildlife monitoring, smart spaces, medical systems and robotic ex-
ploration. Due to the nature of the application, access to the motes may not be
feasible after initial deployment. Hence, the devices have to run for extended
periods of time on battery power, resulting in low-power, energy-saving designs.

Traditionally, the wireless sensor networks have used custom, light-weight
network protocols such as Active Messages. However, given that the motes
are now commonly equipped with an 802.15.4 radio interface and the 6lowpan
adaptation layer allows the exchange of IPv6 packets over 802.15.4 links, en-
abling IPv6 connectivity on wireless sensor networks and connecting them to
the global Internet becomes feasible. By being able to natively support the
IPv6 protocol, these devices would become first-class network citizens capable
of communication over the Internet with any other IPv6-enabled host, benefit
from the standardized and already estabilished technology as well as from the
plethora of readily available applications.

To this end a 6lowpan/IPv6 stack has been implemented for TinyOS 2.0, an
embedded operating system commonly used in wireless sensor networks. The
implementation includes the 6lowpan adaptation layer with fragmentation and
fragment reassembly, handling of the Mesh Addressing and Broadcast headers,
HC1 compression of the IPv6 header and HC UDP compression of the UDP
header. Handling of the uncompressed headers is supported as well. While the
full ICMPv6 protocol is not supported, the ICMP echo mechanism and support
for the UDP protocol have been implemented. The implementation has been
tested on the MicaZ and TelosB motes from CrossBow Technologies.

The hardware platforms used in this project, the TelosB and MicaZ motes,
the 802.15.4 wireless communication standard and the TinyOS 2.0 operating sys-
tem are introduced in more detail in Chapter 2. The IPv6 and UDP protocols
and the 6lowpan adaptation layer are described in Chapter 3. The implemen-
tation is discussed and evaluated in Chapter 4. Chapter 5 gives an overview of
related work, other 6lowpan or IP stack implementations, alternative hardware
platforms, operating systems and link layers for wireless sensor network scenar-
ios, the 802.15.5 mesh extensions and the Delay Tolerant Networking approach.
The work is summarized in Chapter 6 and possible further work is discussed.
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Chapter 2

Hardware

The hardware platforms used in the project, the TelosB and MicaZ motes, are
described in Section 2.1. 802.15.4, the link-layer standard of the radio interface
on the motes, is discussed in Section 2.2 and the operating system used on the
motes, TinyOS 2.0, is introduced in Section 2.3, including a discussion of its
networking capabilities, the 802.15.4 implementation and its compliance with
the 802.15.4 standard.

2.1 Hardware platforms

The hardware platforms chosen for this project are the TelosB and MicaZ motes.
Both platforms were originally developed at UC Berkeley and are now produced
by the Crossbow Technology company. Both platforms are tiny, low-power
motes with restricted resources, equipped with an 802.15.4 RF interface.

The TelosB motes feature a Texas Instruments MSP430 MCU. It is a 16-
bit RISC MCU clocked at 8 MHz and has 16 registers. The platform offers
10 kB of RAM, 48 kB of flash memory and 16 kB of EEPROM. Requiring at
least 1.8 V, it draws 1.8 mA in the active mode and 5.1 µA in the sleep mode.
The MCU has an internal voltage reference and a temperature sensor. Further
sensors available on the platform are a visible light sensor (Hamamatsu S1087),
a visible to IR light sensor (Hamamatsu S1087-01) and a combined humidity
and temperature sensor (Sensirion SHT11).

The MicaZ motes feature an Atmel AVR Atmega128L MCU. It is an 8-bit

Figure 2.1: TelosB mote [12]
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Figure 2.2: MicaZ mote [11] and the MTS 310 sensorboard [13]

RISC MCU with 32 registers. The platform offers 4 kB of RAM, 128 kB of
flash memory and 4 kB of EEPROM. Requiring at least 2.5 V, it draws 8 mA
in the active mode and 15 µA in the sleep mode. The mote is similar to the
Mica2 mote, the main difference being a different radio interface. The MCU
has an internal voltage reference. The voltage reference is useful for monitoring
the battery voltage. Otherwise the MicaZ mote alone does not contain any
sensors. However, using the 51-pin Mica2 connector, various sensor boards can
be connected. For this project, the MTS 300 sensor board has been available.
It contains light, temperature and acoustic (a microphone) sensors as well as a
speaker. Other sensor boards with various sensors, such as accelerometers or
magnetometers are also available.

The radio chipset used on both platforms is the Chipcon CC2420. It provides
a 128-byte TX/RX buffer and AES encryption.

While the TelosB mote has a USB connector and can directly be plugged
into a PC for communication or reprogramming, the MicaZ platform needs to
be attached to a programming board via the 51-pin connector. In this project,
the MIB 520 programming board with a USB interface to the PC has been used.

Clearly, these motes are suitable for low data rate applications requiring only
minimum data processing. Spending most of their time in the sleep mode, the
motes can run for several years on 2 AAA batteries. However, target costs of
less than 10 cents per mote would enable networks with potentially thousands
of devices. A broader overview of other available embedded hardware platforms
can be found in Section 5.2.

2.2 PHY and MAC layer – 802.15.4

The 802.15.4 standard was developed by the 802.15.4 Task Group within the
IEEE and defines the physical layer (PHY) and medium access control (MAC)
layer specifications for low data rate wireless personal area networks (LR WPANS).
Such networks are typically limited to a personal operating space (POS) of up to
10 meters and involve little or no infrastructure. The standard provides for low
complexity, low power consumption, low data rate wireless connectivity among
a wide range of inexpensive devices. Among others, wireless sensor networks
seem to be a suitable application scenario for 802.15.4 networks.
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2.2.1 Network topologies

An 802.15.4 network consists of two types of devices, full-function devices (FFD)
and reduced-function devices (RFD). An FFD can operate as a personal area
network (PAN) coordinator, a coordinator or a device while an RFD can only
act as a device. An FFD can talk to RFDs and other FFDs, while an RFD
can only talk to FFDs. An RFD is intended for very simple applications, such
as a light switch or a passive sensor, with no need to send large amounts of
data. An RFD may associate with only one FFD at a time. As a result of these
restrictions, an RFD needs only minimal resources and memory capacity.

An 802.15.4 network is constituted of at least two devices within a POS
communicating on the same physical channel. It shall contain at least one FFD
acting as the PAN coordinator. The network may operate in a star or a peer-
to-peer topology.

In the star topology devices communicate with a single central PAN coordi-
nator. While RFDs act as communication end-points only, a PAN coordinator
mainly routes communication around the network. Different star networks op-
erate independently of each other. This is achieved by using a PAN identifier
which is unique within the radio range. After the PAN coordinator has chosen
a PAN identifier, it can allow other devices, both FFDs and RFDs, to join the
network.

The peer-to-peer topology also has a PAN coordinator, but additionally
devices can communicate directly with each other. This allows for more complex
topologies, such as a mesh topology or a cluster-tree.

The cluster-tree network is a special case of a peer-to-peer network with
mostly FFD devices. As a RFD can associate to only one FFD, RFDs can
participate in cluster-tree networks only as leave nodes. Any of the FFDs can
act as coordinators and provide synchronization services to other devices and
coordinators. One of these coordinators becomes the overall PAN coordinator.
The PAN coordinator forms the first cluster by picking an unused PAN identi-
fier, becoming the cluster head (CLH) with cluster identifier (CID) of zero and
broadcasting beacon frames. Devices receiving these beacon frames may re-
quest joining the cluster at the CLH. If the PAN coordinator grants the joining,
the new device will be added to the PAN coordinator’s neighbor list and start
broadcasting beacons as well. Other devices may then join the network at this
new device as well. If it is not possible to join the network at the CLH, a device
searches for another parent device. The PAN coordinator may instruct another
device to become the CLH of a new adjacent cluster. This could happen if pre-
determined application or network requirements are fulfilled. As other devices
connect, a multicluster network structure is formed. In its simplest form, the
cluster tree network consist of only a single cluster, but larger networks may
be formed as a mesh of multiple neighboring clusters. This is illustrated in
Figure 2.3. The multicluster structure trades increased message latency for an
increase in coverage area. Such a peer-to-peer network can clearly be ad-hoc,
self-organizing and self-healing.

The 802.15.4 standard provisions for two types of addresses. All devices
shall have unique 64-bit extended IEEE addresses. These extended address can
be used for direct communication within the PAN. Additionally, devices can
be allocated 16-bit short addresses by the PAN coordinator during association
with the PAN coordinator.
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Figure 2.3: Cluster Tree Network – lines represent parent-child relationships
rather than communication flow. Image taken from [25].

frequency data rate
2400 – 2483.5 MHz 250 kbps
902 – 928 MHz 40 kbps
868 – 868.6 MHz 20 kbps

Table 2.1: 802.15.4 frequency bands

3 frequency bands using different data rates are available for 802.15.4. They
are summarized in Table 2.1.

2.2.2 Data transfers in beacon-enabled and non-beacon
networks

There are two modes of operation of an 802.15.4 network, a beacon-enabled and
a non-beacon mode.

In the beacon-enabled mode, an optional superframe structure is used. It
is defined and bounded by the beacons broadcasted by the coordinator. The
beacons are used to synchronize devices, identify the PAN and describe the su-
perframe structure. The superframe is divided into 16 equally sized slots. A
beacon is broadcasted in the first slot of each superframe. An illustration is
available in Figure 2.4. Devices wishing to communicate during the contention
access period (CAP) between two beacons compete with other devices using s
slotted CSMA-CA (Carrier Sense Multiple Access - Collision Avoidance) mech-
anism. The superframe may be divided into an active and an inactive portion.
During the inactive portion the coordinator does not interact with the PAN
and may enter a low-power mode. The coordinator may dedicate portions of
the active superframe to guaranteed time slots (GTSs) for low-latency appli-
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Figure 2.4: Superframe structure. The Contention Free Period is optional.
Image taken from [25].

cations or bandwidth guarantees. The GTSs form the contention-free period
(CFP) and appear at the end of a superframe. There may be at most 7 GTSs
per superframe and a GTS may occupy more than one time slot.

There is a difference between data transfers from a device to a coordinator
and vice-versa. For data transfers from a device to a coordinator, the device
uses slotted CSMA-CS to transmit its data frame. For data transfers from
a coordinator to a device, the coordinator indicates in the beacon that data is
pending for the device. The device periodically listens for the beacon broadcasts.
If a data transfer is pending for it, it transmits a MAC command requesting
the data transfer. This MAC command is transmitted using slotted CSMA-CA.
Upon reception of the MAC command, the coordinator uses slotted CSMA-CA
to transmit the data frame to the device.

The coordinator may decide that non-beacon mode is used. Then there is
no superframe structure and devices use unslotted CSMA-CA instead of slotted
CSMA-CA. Note that beacons are still needed for network association. For
data transfer from a coordinator to a device, the device has to request the data
transfer using a MAC command. If there is data pending for the device, it is
transmitted in a data frame. Otherwise, a data frame with zero-length payload
is transmitted, indicating no pending data for the device.

For peer-to-peer data transfers the devices either receive constantly or syn-
chronize with each other. In the former case unslotted CSMA-CA is used while
the latter case is beyond the scope of the 802.15.4 standard.

The 802.15.4 protocol has been designed to favor battery-powered devices.
These can spend most of their time in a sleep state saving battery power. How-
ever, they have to periodically wake up and check if there are any messages
pending by listening to beacons. This allows the application designer to bal-
ance between battery consumption and message latency.

2.2.3 Robustness

Robustness in the 802.15.4 networks is achieved by using optional frame ac-
knowledgments, CSMA-CA mechanisms and data verification.

The 802.15.4 standard accommodates optional frame acknowledgments for
MAC command frames and data frames. Note that in both non-beacon and
beacon-enabled networks, these acknowledgments are sent directly without us-
ing CSMA-CA.

The non-beacon networks use an unslotted CSMA-CA channel access mech-
anism. When a device wishes to transmit a frame, it has to wait for a random
period of time. If the channel is idle after this random period of time, data shall
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be transmitted. In case the channel is busy, the device shall wait for another
random period of time before retrying.

Beacon-enabled networks use a slotted CSMA-CA channel access mecha-
nism. The backoff slots are aligned with the start of the beacon transmission.
A device wishing to transmit during the CAP period waits for a random number
of backoff slots. If the channel is idle afterwards, it can transmit. Otherwise, it
waits for another random number of backoff slots before retrying.

For the data verification part, a 16-bit cyclic redundancy check (CRC) is
used on every frame to detect bit errors.

2.2.4 Security

Several security services such as maintaining an access control list (ACL) and
using symmetric-key cryptography to protect transmitted frames are specified
by the standard.

Using these services, devices may operate in one of the three security modes:
unsecured, ACL and secured mode. In the unsecured mode, no security services
are used. Devices operating in the ACL mode maintain ACL lists of devices
from which they are willing to receive frames. Devices operating in the secured
mode use cryptography services in addition to ACLs. The cryptography services
include data encryption for beacon, command and data payloads, usage of a
message integrity code to provide frame integrity, i.e. to protect data from being
modified by parties not sharing the encryption key, and sequential freshness
using an ordered sequence of inputs to reject replayed frames. The freshness
checking works by comparing the freshness value of a received frame with the last
known freshness value. If it is newer, the check has passed and the last known
freshness value is updated. The distribution of the symmetric encryption keys
is not specified by the 802.15.4 standard.

2.2.5 Implications for higher layers

From the viewpoint of higher network layers, an important aspect of 802.15.4
is its limitation on the frame size. The PHY header uses a 7 bit field to specify
payload length in bytes (0-127 bytes). Taking into account the PHY and MAC
layer headers, this leaves a Maximum Data Length of 102 bytes for the higher
layers. Further interesting implications on the IP traffic are mentioned in [40]:

1. Links are predominantly bimodal for short packet bursts.

2. Sporadic traffic observes intermediate links, which are due to SNR varia-
tions.

3. There are ETX asymmetries, which are larger over longer time intervals.

4. Acknowledgement failures are correlated.

The 802.15.4 protocol is defined in the 802.15.4-2003 standard. This docu-
ment was approved in May 2003 and published in October 2003. With releasing
of the standard, the work of the 802.15.4 task group has been completed, the
group was hibernated and two new task groups, 802.15.4a and 802.15.4b, have
been formed.
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2.2.6 802.15.4a Task Group

The 802.15.4a Task Group is developing an amendment to the current 802.15.4-
2003 standard for an alternate PHY to provide high precision ranging and lo-
cation capability with 1 meter accuracy and better, high aggregate throughput,
ultra low power, higher data rates, longer range, lower power consumption and
lower cost. The baseline specification has been selected in March 2005 to in-
clude two optional PHYs consisting of a UWB Impulse Radio operating in the
unlicensed UWB spectrum and a Chirp Spread Spectrum operating in the un-
licensed 2.4GHz spectrum. The UWB Impulse Radio should be able to deliver
high precision ranging. The final standard is expected to be published by IEEE
in March 2007.

2.2.7 802.15.4b Task Group

The 802.15.4b Task Group is refining the current 802.15.4-2003 specification to
clear up ambiguities and resolve inconsistencies. Furthermore, the group is sup-
posed to make specific extensions such as a faster sub-GHz physical interface,
add support for time synchronization, reduce unnecessary complexity, increase
flexibility in security key usage and consider newly available frequency alloca-
tions. The IEEE 802.15.4b standard has been approved in June 2006 and is
waiting for publication.

2.2.8 ZigBee Alliance

While the IEEE 802.15.4 standard provides the lower network layers, the ZigBee
alliance [42] is supposed to provide the upper layers ranging from the network
layer to the application layer, including application profiles. The alliance pro-
vides interoperability compliance testing and marketing of the standard. It in-
tends to ensure cross-vendor compatibility, i.e. it should guarantee that a light
switch from one company works with the lights from another company. The
ZigBee standard has been publicly released in June 2005. In December 2005
there have been 6 compliant platforms. These upper layers provided by Zigbee
usually are application-specific and do not use a general purpose protocol such
the Internet Protocol.

2.3 The TinyOS operation system

TinyOS [20] is an event-driven embedded operating system. It was designed
for extremely restricted devices such as the wireless sensor network motes. It
has a very small footprint, with the core OS requiring only 400 bytes of code
and data memory. The system provides a set of reusable components which
can be combined together. The components implement hardware abstractions,
access to various sensors and actuators via a higher level interface, a scheduler
handling tasks and hardware interrupts, a timer interface, access to storage
by using the flash memory on the motes, access to the radio and networking
support via Active Messages. Active Messages are described in Section 2.3.2.
All memory is allocated statically and there is no dynamic memory allocation,
no memory mamangement and no virtual memory. There also is no kernel
space and user space differentiation and no process management. There are no
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Figure 2.5: NesC components and interfaces

blocking operations. All long-latency operations are split-phase, i.e. commands
requesting an operation return immediately and completion of the operation is
signaled with an event.

TinyOS originated at UC Berkeley and is now developed by a consortium
lead by UC Berkeley. Currently there are two versions, 1.1 and 2.0. The newer
2.0 version is not backwards compatible with the 1.1 version. In this project,
the 2.0 version has been used.

2.3.1 NesC

The TinyOS operating system is written in the nesC language [20]. NesC is a
dialect of the C language. It is a “static” language with no dynamic memory
allocation and no dynamic linking. This allows for whole program analysis at
compile time, resulting in efficient optimizations. Furthermore, safety checks
such as data-race detection are also performed at compile time. The nesC
compiler works as a pre-processor producing a C program as output. This C
program is then compiled using a gcc compiler for the specific platform such as
msp430-gcc or avr-gcc.

NesC applications are based on interfaces and components. A component
provides and uses interfaces. An interface is a set of commands and events. In
case a component provides an interface, then commands are functions provided
by this component and can be executed by other components. Events can
be signaled by other components and have to handled by this component by
providing a handler function. Having both commands and events allows for
bidirectional communication between the components.

A nesC application consists of components. The components are connected
together by the application using a wiring specification, which is independent
of the component implementations. A component using an interface is wired
to another component providing that interface. This allows to break down
the implementation into different components and then flexibly combine them
together in order to create an application.

Components are of two types, configurations and modules. A module imple-
ments interfaces. A configuration connects modules together via their interfaces
by providing a wiring specification. A nesC application is then a top-level con-
figuration. An illustration of the relations between components and interfaces
is in Figure 2.5. The notion of components, interfaces and wiring allows for a
component-based architecture of the TinyOS system.

Concurrency in nesC and TinyOS is achieved by using tasks. A task is
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defined as a void function (without a return value) with the task keyword.
By using the post operation a task can be placed on the internal task queue
of TinyOS, which is processed in FIFO order. The TinyOS scheduler later
schedules the task to run. Once this happens, the task runs to completion
before another task is run. In other words, tasks do not preempt each other.
However, it is possible for a task to be preempted by a hardware event. Another
concurrency-related feature of nesC is the division of code into synchronous and
asynchronous. By default, code is synchronous unless marked as asynchronous.
The important difference is that asynchronous code can only call asynchronous
code but not synchronous code. A low-level hardware event handler would
then be asynchronous. To get to synchronous code it would post a task. The
task could then contain synchronous code. The tasks and the synchronous-
asynchronous code distinction allow TinyOS to support concurrency with low
overhead.

Although all memory is allocated statically, the PoolC component offers
a dynamic memory-like pool. Internally, the component contains a statically
allocated array with instances. These are all of the same type. By using the
get operation, an instance can be requested from the pool. The put command
allows to return it back into the pool. The size of the pool, i.e. the size of the
internal array, is not runtime changeable as the array is allocated statically.

2.3.2 Networking in TinyOS

TinyOS networking is based on Active Messages [21]. Active Messages are
sent as 802.15.4 frames and the Active Message addresses are used as link-layer
addresses, the 802.15.4 short addresses. The Active Message addresses are 16
bits long and each mote has one such address. The all ones 0xFFFF address
is a broadcast address and frames destined to it are received by every mote.
The Active Message header is defined to match the header of an 802.15.4 data
frame. However, the Active Message header contains an additional 1-octet long
dispatch field before the Active Message payload. This dispatch field is then
the first octet in the 802.15.4 payload. It is used to multiplex received messages
between different applications on the same mote.

Active Messages are represented in TinyOS as a message t structure. For
platforms with an 802.15.4 radio it contains a buffer for the complete 802.15.4
frame, including the header and the payload, as well as some additional infor-
mation such as the transmission power or the rssi and lqi values for a given
frame. Active messages are sent using a split-phase interface, AMSend. Sending
a message is requested via the send function, which takes as arguments the
destination address, a message t structure and the length of the payload. Once
the message has been sent, the sendDone event is signaled and the message t
structure is passed as a parameter to the handling function. Contents of the
structure shall not be modified before the event is signaled. Active Messages
can be received by using the Receive interface. When an Active Message is re-
ceived, the event receive is signaled and a message t containing the message
is passed as argument to the handling function. The function has to return a
message t, which will be used by TinyOS for receiving the next Active Message.
While an application can return the same message as it has received, it may
decide to keep it and return another instance of message t. In this way, TinyOS
allows to change the “owner” of the buffer rather than forcing an application to
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copy the Active Message payload. The interfaces are parametrized and the AM
Type dispatch is used to decide, which particular instance of the component,
i.e. which application shall receive the message. The payload length of Active
Messages is limited by the frame length of 802.15.4 as no fragmentation mech-
anisms are provided. By requesting link-layer acknowledgements, it is possible
to determine whether an Active Message has been delivered successfully.

Other or higher layer protocols such as the IPv4 or IPv6 are not included in
the TinyOS distribution.

The TinyOS 2.0 distribution also lacks a proper 802.15.4 stack. The 802.15.4
standard[25] requires certain functionality at the MAC layer, which is not im-
plemented. TinyOS only sends the Active Messages in 802.15.4 data frames and
implements the backoff procedure in case of a collision on the medium. However,
it cannot join an 802.15.4 PAN or process beacons and MAC commands.

Jan Flora from University of Copenhagen has implemented an 802.15.4 stack
for TinyOS 1.1, available in the TinyOS 1.1 distribution under contrib/diku.
However, the porting to TinyOS 2.0 seems to be problematic due to a change
in the timer implementation between TinyOS 1.1 and 2.0. The latter defines
miliseconds as 1/1024s and microseconds as 1/1048576s. The resulting impre-
cision is beyond the accuracy required by the 802.15.4 specification.
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Chapter 3

Above the link-layer

This chapter describes the IPv6 protocol in Section 3.1, the UDP protocol in
Section 3.2 and in Section 3.3 the 6lowpan adaptation layer allowing the trans-
portation of IPv6 packets over 802.15.4 links.

3.1 Internet Protocol Version 6

Internet Protocol Version 6 (IPv6) [14] is a layer 3 best-effort transport proto-
col. It is the new version of the Internet Protocol, designed as the successor
to IP version 4. Changes from IPv4 primarily include the expansion of the IP
address size from 32 to 128 bits, header format simplification, improved support
for extensions and options, flow labeling capability, authentication extensions
and privacy extensions. As a complete description of IPv6 would be beyond the
scope of this document, only details relevant to the 6lowpan implementation are
discussed. In particular, the IPv6 header is discussed in Section 3.1.1, the ad-
dressing architecture in Section 3.1.2, the pseudo-header for upper-layer check-
summing in Section 3.1.3, the ICMPv6 protocol in Section 3.1.4 and Neighbor
Discovery in Section 3.1.5.

3.1.1 Header format

An IPv6 packet includes an IPv6 header. Usually it is placed into the beginning
of the lower layer payload. The IPv6 header is shown in Figure 3.1. The
Version field is always set the the value of 6. The Traffic Class and Flow
Label fields can be used for labeling packets belonging to particular traffic flows
and to request non-default quality of service or “real-time” service. Typically,
these are not used and set to zero. The Payload Length indicates the length of
the IPv6 payload, i.e the rest of the packet following after the IPv6 header, in
octets. Next Header specified the type of header immediately following after the
IPv6 header. This could be an IPv6 extension header or the next layer header.
The Next Header value is 6 for TCP, 17 for UDP and 58 for ICMPv6. The Hop
Limit is initialized by the sender and decremented by 1 by each node forwarding
the packet. When it is decremented to zero, the packet is discarded. The
Source Address and Destination Address carry the 128-bit IPv6 addresses
of originator and the intended recipient of the packet.
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+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Version| Traffic Class | Flow Label |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Payload Length | Next Header | Hop Limit |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Source Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Destination Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 3.1: IPv6 header

IPv6 encodes optional internet-layer information in separate, so-called ex-
tension headers. These are placed between the IPv6 header and the upper layer
payload. Each such extension header contains a Next Header field, like the
IPv6 header, indicating the type of the header or the payload following after
it. In this way, a daisy chain of headers can be formed. An IPv6 packet can
contain zero, one or more of the extension headers. Available extension headers
are Hop-by-Hop Options, Destination Options, Routing, Fragment, Authenti-
cation, Encapsulation Security Payload and Destination Options. More details
about the extension headers can be found in [14], [30] and [31].

The IPv6 specification requires the underlying lower layer used for trans-
porting IPv6 packets to provide an MTU of at least 1280 bytes. Furthermore,
implementations must be able to accept fragmented packets that are as large as
1500 bytes after fragment reassembly.

3.1.2 Addressing architecture

The addressing architecture of IPv6 is defined in [22]. IPv6 addresses are 128
bits long interface identifiers.

There are three types of addresses, unicast, multicast and anycast. A uni-
cast address identifies a single interface and a packet destined to such address is
delivered to the identified interface. An anycast address identifies a set of inter-
faces and a packet destined to such address is delivered to one of the interfaces
identified by the address. A multicast address also identifies a set of interfaces,
but a packet destined to such address is delivered to all the interfaces identified
by it.
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Address type Binary prefix IPv6 notation
Unspecified 00...0 (128 bits) ::/128
Loopback 00...1 (128 bits) ::1/128
Multicast 11111111 FF00::/8
Link-local unicast 1111111010 FE80::/10
Global unicast everything else

Table 3.1: IPv6 address types

IPv6 addresses are assigned to interfaces rather than nodes. As a unicast
address refers to a single interface and an interface belongs to a single node,
unicast addresses can also be used as node identifiers.

A common text representation of IPv6 addresses is x:x:x:x:x:x:x:x, where
each x is one to four hexadecimal digits representing one of the 16-bit pieces of an
IPv6 address. The representation may contain one :: representing one or more
groups of 16 bits filled with zeros. The :: can also be used to compress leading
or trailing zeros. However, it can only appear once in an address as otherwise the
number of the compressed zero-filled groups would be ambiguous. For example
the address FF01:0:0:0:0:0:0:123 can be compressed to FF01::123 and the
address 0:0:0:0:0:0:0:1 can be expressed as ::1.

To represent a prefix, the format ipv6_address/prefix_length is used.
The address is written in the format described above and the prefix length is
the number of bits of the prefix.

The type of an address is identified by its high-order bits as shown in Ta-
ble 3.1.

The all zeros :: address is the unspecified address, which indicates the ab-
sence of an address. The ::1 address is the loopback address. It can be used
by a node to send a packet to itself. Link-local addresses are for use on a single
link for purposes such as automatic address configuration, neighbor discovery
or when no router is present. A packet with a link-local source or destination
address will not be forwarded by a router.

The structure of a multicast address is 8 one-bits, followed by four flag and
four scope bits. Afterwards follows a 112-bits long multicast group ID. More
information about multicast addresses can be found in [22]. For this project
relevant is the scope value of 2, indicating link-local scope, and the following
multicast addresses

• the link-local all-nodes address FF02::1\ verb, which addresses all nodes
on the link

• the link-local all-routers address FF02::2\ verb, which addresses all routers
on the link

• the solicited-node address FF02::1:FFXX:XXXX\ verb. It is calculated as
a function of a node’s unicast and anycast addresses by appending the
low-order 24 bits of that address to the prefix FF02::FF00:0/104. A
node is required to join the associated solicited-node multicast addresses
for all the unicast and anycast addresses that have been configured on its
interfaces, both manually and automatically.
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+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Source Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Destination Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Upper-Layer Packet Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| zero | Next Header |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 3.2: IPv6 pseudo-header for upper-layer checksum computation

3.1.3 Upper-layer checksums

The IPv6 header itself does not include a checksum. However, the pseudo-
header shown in Figure 3.2 can be used by upper-layer protocols in checksum
calculations. It is used by ICMPv6, UDP and TCP.

3.1.4 ICMPv6

The Internet Control Message Protocol for IPv6 (ICMPv6) [9] is an integral part
of the IPv6 protocol. It carries various types of control messages used by IPv6.
It is used to report errors encountered in processing packets and to perform
other internet-layer functions and diagnostics. An ICMPv6 message is preceded
by an IPv6 header and zero or more extension headers. The ICMPv6 header is

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ Message Body +
| |

Figure 3.3: ICMPv6 general header format

15



0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identifier | Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data ...
+-+-+-+-+-

Figure 3.4: ICMPv6 Echo Request and Echo Reply message format

identified by a preceding Next Header value of 58. Each ICMPv6 message starts
with a common header format shown in Figure 3.3. The type field indicates the
type of the message and determines the format of the remaining data as well as
the meaning of the Code value. The Checksum is the 16-bit one’s complement of
the one’s complement sum of the entire ICMPv6 message starting with the Type
field, and prepended with the IPv6 pseudo-header as described in Section 3.1.3.
For computing the checksum, the Checksum field is set to zero.

From the various types of ICMP message only the informational Echo Re-
quest and Echo Reply messages will be described here. These are used for
diagnostic purposes and are often referred to as ping messages. Both are of
the format shown in Figure 3.4 The Type field is 128 for an echo request and
129 for an echo reply. The Code is always set to zero. The Identifier and
Sequence Number are used in matching requests to replies. There may be zero
or more octets of Data. A reply message should contain the same Identifier,
Sequence Number and Data as the request, in repose to which it is sent.

3.1.5 Neighbor discovery

The Neighbor Discovery protocol for IPv6 [35] is used by hosts to determine the
link-layer address of neighbors known to reside on attached links. It is also used
to actively keep track of which neighbors are reachable and which not, and to
detect changed link-layer addresses. Furthermore, it is used to find neighboring
routers willing to forward packets. When a router or path fails, it is used to
actively search for functioning alternatives.

Neighbor discovery uses the Neighbor Solicitation and Neighbor Advertise-
ment, Router Solicitation, Router Advertisement and Redirect ICMPv6 mes-
sages, with Type values 135, 136, 133, 134 and 137, respectively. The first two
message types and how they are used to determine the link-layer address of
a neighbor will be described. Details about the other messages and Neighbor
Discovery mechanisms can be found in [35].

A node sends a Neighbor Solicitation to request the link-layer address of a
another node. Other ways of using this message type, described in [35], are not
discussed here. By sending the request the node already provides its own link-
layer address to the target node. The solicitation is multicast on the link-layer.
Its format is shown in Figure 3.5. The Type is 135, Code is zero and checksum
is determined like for other ICMPv6 packets, as explained in Section 3.1.4. The
Reserved field is set to zero and the Target Address carries the IPv6 address

16



0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Target Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Options ...
+-+-+-+-+-+-+-+-+-+-+-+-

Figure 3.5: Neighbor Solicitation message format

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|R|S|O| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Target Address +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Options ...
+-+-+-+-+-+-+-+-+-+-+-+-

Figure 3.6: Neighbor Advertisement message format
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0 7 8 15 16 23 24 31
+--------+--------+--------+--------+
| Source | Destination |
| Port | Port |
+--------+--------+--------+--------+
| | |
| Length | Checksum |
+--------+--------+--------+--------+
|
| data octets ...
+---------------- ...

Figure 3.7: User Datagram Protocol header

of the solicited target. The Options field carries the link-layer address of the
solicitation sender. The format of this field depends on the link-layer used.
IPv6 Destination Address in the IPv6 header is the solicited-node multicast
address corresponding to the target address. The Hop Limit in the IPv6 header
is set to 255.

When a node receives a Neighbor Solicitation, it should check the Hop Limit
and discard the message if it’s not 255 to make sure that the message could
not have been forwarded by a router. The node then replies with a Neighbor
Advertisement message. While such message can be sent for other reasons as
well, only the replying to a Neighbor Discovery will be described. The format
of the Node Advertisement message is shown in Figure 3.6. The Type field is set
to 136, Code to zero and the checksum is calculated as specified in Section 3.1.4.
The Reserved field is set to zero and the Target Address field carries the
solicited address from the Target Address filed in the solicitation to which this
message is a reply. In solicited advertisements the flags shall be set as follows.
The S flag is set to one, the O flag is set one unless the solicited address is
an anycast address and the R flag shall be set to one if the sender is a router.
The Options field contains the target link-layer address, i.e. the address of the
sender of the advertisement. The format of this field depends on the link-layer.

3.2 UDP

The User Datagram Protocol (UDP) [36] is a state-less, unreliable, best-effort
datagram transport protocol that can be used over the IPv6 protocol. The de-
livery of datagrams is not guaranteed and they may get reordered during the
transport. The UDP header format is shown in Figure 3.7. The port num-
bers are meaningful only with the addresses of the underlying network protocol,
i.e. with the source and destination IP addresses. The Destination Port in-
dicates the recipient process and the Source Port can be used to reply back
to the sending process. the Length field is the length of the UDP header and
payload. The Checksum is mandatory with IPv6 and is calculated as the one’s
complement of the one’s complement sum of the IPv6 pseudo-header described
in Section 3.1.3, the UDP header and the UDP payload.
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3.3 6lowpan

6lowpan is a working group within the IETF concerned with the specification
of transmitting IPv6 packets over IEEE 802.15.4 networks.

Currently, there are two 6lowpan internet drafts, [32] and [34]. The for-
mer gives an overview, motivation and a problem statement while the latter
dives into technical details and defines the frame format for transmission of
IPv6 packets over 802.15.4 networks. Creation of IPv6 link-local addresses and
statelessly autoconfigured addresses on top of 802.15.4 networks is described.
As IPv6 requires support of packet sizes larger than the maximum 802.15.4
frame size, an adaptation layer is defined. To make IPv6 practical on 802.15.4
networks, mechanisms for header compression and provisions for packet deliv-
ery in 802.15.4-based meshes are defined. Both documents have already been
submitted for review to the IESG for proposed standard RFCs.

IEEE 802.15.4 defines four types of frames: beacon, MAC commands, data
and acknowledgment frames. IPv6 packets are carried on data frames. It is
recommended that these frames are acknowledged using the optional link-layer
acknowledgment scheme of 802.15.4 to aid link-layer recovery. Use of the beacon-
enabled 802.15.4 mode is not required for transporting IPv6 packets. Although
not required by 802.15.4, for carrying IPv6 packets it is necessary to specify
both source and destination addresses in the 802.15.4 frame header.

3.3.1 Addressing modes

802.15.4 defines two types of addresses, IEEE 64-bit extended addresses and
16-bit short addresses unique within the PAN. Both types are supported by
6lowpan. However, 6lowpan imposes additional constraints on the short 16-bit
addresses where specific prefixes have to be used depending on the type of the
address. Unicast, multicast and reserved (for future use) prefixes are allocated
in a new IANA registry.

Note that a 16-bit short address is only available after an association event.
These short addresses are rather transient in nature as their validity and unique-
ness are limited by the lifetime of the association event and rely on the PAN
coordinator. Hence, they should be used with caution.

It is assumed that a PAN maps to a specific IPv6 link, implying a unique
prefix. Hence, the 16-bit PAN ID can be mapped to an IPv6 prefix. This can be
used to implement IPv6 multicast by a link-layer broadcast limited to a PAN.

6lowpan also provides for stateless address autoconfiguration. As each 802.15.4
device has an EUI-64 identifier [24] assigned to it, an IPv6 interface identifier
[23] can be obtained from this EUI-64 identifier using the stateless autoconfig-
uration described in [10].

Although all 802.15.4 devices have an EUI-64 address, it is also possible
to use the short 16-bit addresses for autoconfiguration. In this case a pseudo
48-bit address is formed by concatenating the 16-bit PAN ID (or 16 zero-bits
if unknown), 16 zero bits and the 16-bit short address from left to right. The
result would then be

16_bit_PAN_ID:16_zero_bits:16_bit_short_address

The IPv6 interface identifier is formed from this 48-bit pseudo address as per
the IPv6 over Ethernet specification [10]. This specifies that the first 3 octets of
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the 48-bit address are followed by the 2-octets long hexadecimal value FFFE and
the remaining 3 octets of the 48-bit pseudo address. Resulting in the following
64 bits

16_bit_PAN_ID:0x00:0xFF:0xFE:0x00:16_bit_short_address

where 0x stands for hexadecimal values. However, the “Universal/Local” (U/L)
bit should be set to zero in the resulting interface identifier to reflect that such
identifier is not globally unique. This is the next-to-lowest order bit of the first
octet. Furthermore, all-zero addresses are not allowed in both cases. A 16-bit
short address 12-34 and PAN ID 56-78 would be mapped into

55-68-00-FF-FE-00-12-34

The mapping of non-multicast (unicast) IPv6 addresses to 802.15.4 link-
layer addresses follows the usual neighbor discovery in IPv6 as described in [35].
The Source/Target Link-layer address options for 802.15.4 link are shown
in Figure 3.8. The Type is set to 1 for Source Link-layer address and to 2 for
Source Link-layer address. The Length field is 1 for short 16-bit addresses
and 2 for EUI-64 addresses.

Packets with a multicast IPv6 destination address are sent to the 16-bit
802.15.4 address obtained by concatenating the 3-bit multicast prefix 101, bits
3 to 7 in the 15-th octet and the whole 16-th octet of the IPv6 address.

3.3.2 Adaptation layer

The IPv6 protocol requires support for a Maximum Transmission Unit (MTU)
of 1280 octets, which is well beyond the largest possible 802.15.4 frame size.
Depending on overhead, the 802.15.4 protocol data units have different data
sizes, leaving 81 to 102 octets for higher layers. Given the maximum physical
layer packet size (aMaxPHYPacketSize) of 127 octets and a maximum frame
overhead (aMaxFrameOverhead) of 25 octets, 102 octets are left at the MAC
layer. Link-layer security imposes further overhead of 21, 13 or 9 octets in
case AES-CCM-128, AES-CCM-64 or AES-CCM-32 is used, respectively. In
the case of AES-CCM-128, only 81 octets are left available. This clearly is be-
low the IPv6 MTU requirement, so an adaptation layer for fragmentation and
reassembly is provided between layer two and three. This layer provides also ad-
ditional functionality beyond just fragmentation. Mechanisms supporting mesh
networking are defined and a dispatch value before the actual payload allows
for header compression in higher layers by indication what type of datagram
follows. While the format of the adaptation layer and fragmentation details
are described in this section, mesh networking is discussed in Section 3.3.4 and
header compression is discussed in Section 3.3.3. It should be noted that as
6lowpan is still work in progress the format of the adaptation layer has changed
from the one described in the proposal for this project.

IPv6 datagrams transported over 802.15.4 are prefixed by an encapsulation
header stack. This header stack is put into the beginning of the 802.15.4 MAC
protocol data unit (PDU) and is followed by the lowpan payload, e.g the IP
header and payload. Each header in the header stack starts with a dispatch
value indicating the header type. Zero or more header fields follow after the
dispatch value. The stack may contain three optional 6lowpan headers: the
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0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length=2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+- IEEE 802.15.4 -+
| EUI-64 |
+- -+
| |
+- Address -+
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+- Padding -+
| |
+- (all zeros) -+
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length=1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 16-bit short Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+- Padding -+
| (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 3.8: Source/Target Link-layer Address option for neighbor discovery
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Dispatch Value Header Type
00 xxxxxx Not a 6lowpan frame
10 xxxxxx Mesh Header
11 000xxx Fragmentation Header - first fragment
11 100xxx Fragmentation Header - subsequent fragments
01 010000 Broadcast Header
01 000001 uncompressed IPv6 header
01 000010 LOWPAN HC1 compressed IPv6 header

Table 3.2: 6LoWPAN dispatch values

802.15.4 header

optional mesh addressing header

optional broadcast header

optional fragmentation header

IPv6 header (6lowpan-compressed)

layer 4 header (i.e. 6lowpan compressed UDP header)

layer 4 payload (application payload)

Figure 3.9: Example 802.15.4 frame with 6lowpan payload

Mesh Addressing Header, the Broadcast Header and the Fragmentation Header.
These shall appear in the specified order, but any of them may be omitted
if not needed. Afterwards follows a dispatch value indicating the type of the
payload and then the lowpan payload itself. This may be, for example, an
uncompressed IPv6 header or a LOWPAN HC1 compressed IPv6 header. The
dispatch value would be used to determine what type of payload it is or whether
it is compressed. The meaning of the various dispatch values is presented in
Table 3.2. The described encapsulation formats are also called the LoWPAN
encapsulation. Figure 3.9 shows an 802.15.4 frame carrying a possible 6lowpan
payload.

Fragmentation Header

If the datagram does not fit within a single 802.15.4 frame, 6lowpan fragmenta-
tion below the IP layer is used. A fragmented packet is carried in frames con-
taining the fragmentation header. This header starts with a dispatch value of
11000 for the first fragment and 11100 for subsequent fragments. After the 5-bit
dispatch-prefix follows an 11-bit datagram size field and a 16-bit datagram tag
field. Subsequent fragments’ header is the followed by an 8-bit datagram offset
field.

The datagram size value indicates the size of the original unfragmented
packet excluding the optional 6lowpan headers. It allows the recipient to allocate
a reassembly buffer of the correct size. The datagram tag value is the same
for all fragments belonging to the same packet. The datagram offset value
indicates, in increments of 8 octets, the offset of the fragment from the beginning
of the payload. The header formats are shown in Figures 3.10 and 3.11.

Upon receipt of a link fragment, the recipient starts reconstructing the origi-
nal unfragmented packet. Fragments belonging to the same packet are identified
by having the same 802.15.4 source and destination addresses, datagram size
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1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1 1 0 0 0| datagram_size | datagram_tag |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 3.10: Fragmentation Header - first fragment

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1 1 0 0 0| datagram_size | datagram_tag |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|datagram_offset|
+-+-+-+-+-+-+-+-+

Figure 3.11: Fragmentation Header - subsequent fragments

and datagram tag. When a fragment of a packet is first received a reassem-
bly timer, of at most 60 seconds, is started. When this timer expires before
reassembly completes, all fragments belonging to the packet shall be discarded.
In the case of receiving a fragment overlapping another fragment as identified
above, all fragments corresponding to that packet shall be discarded and a new
reassembly may be started with the new fragment. Note that receiving a dupli-
cate of a fragment would not trigger the discarding of fragments.

Although the main reason for the fragmentation in the adaptation layer is
IPv6 compliance, it is expected that most 802.15.4 applications will not produce
large packets. Using appropriate header compression, such packets could well fit
into single frames. Nevertheless, the protocols themselves do not restrict bulk
data transfers.

Mesh Addressing Header

Frames using mesh networking include a mesh addressing header. This header
is prefixed with a 2-bit 10 dispatch value, followed by a 1-bit O flag, a 1-bit F
flag and a 4-bit Hops Left field. Afterwards follow the Originator and Final
Destination link-layer addresses. The O flag is set to 0 if the Originator address
is an extended IEEE 64-bit address (EUI-64) and to 1 if it is a short 16-bit
address. The F flag has a similar meaning for the Final Destination address.
The Hops Left field is decremented at each node when the frame is forwarded.
When a value of zero is reached, the frame is discarded. The header format is
shown in Figure 3.12.

Broadcast Header

Additional mesh routing functionality can be encoded in the broadcast header.
This header starts with the 8-bit 01010000 dispatch value. The last 6-bits,
010000, are also known as the LOWPAN BC0 dispatch. The dispatch value is
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1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1 0|O|F|HopsLft| originator address, final address
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 3.12: Mesh Addressing Header

1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0|1|LOWPAN_BC0 |Sequence Number|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 3.13: Broadcast Header

followed by an 8-bit Sequence Number. This shall be decremented by the orig-
inator whenever it sends a new mesh broadcast or multicast packet. This field
should be useful in detecting duplicate packets. A full specification of how to
handle this field is out of the scope of the 6lowpan working group. The format
of the broadcast header is shown in Figure 3.13.

3.3.3 Header compression

Even though 81 octets are left in a 802.15.4 frame for IPv6, the IPv6 header
alone is 40 octets long, leaving 41 octets for upper layers. In case UDP is used,
which has a header of 8 octets, only 33 octets can be used for application data.
Note that the adaptation layer described in Section 3.3.2 further decreases the
available space by at least one octet used for the dispatch value of an uncom-
pressed IPv6 header. These severe space restrictions make the use of header
compression almost unavoidable.

Compared to published work and standardized approaches to header com-
pression, IPv6 over 802.15.4 differs in several ways. Existing work assumes many
flows between two devices while in 6lowpan only one flow is expected most of
the time. Taking into account the limited packet sizes, integrating layer 2 and
3 compression seems viable. Furthermore, 802.15.4 devices would be mostly
deployed in multi-hop networks. These differ from usual point-to-point link
scenarios where the compressor and the decompressor are in direct, exclusive
communication with each other. If preliminary context is required, which is
often the case, building it should not rely exclusively on the in-line negotiation
phase, so that already the fist packet sent could be compressed.

As the header compression changes packet format, its usage is indicated by
the dispatch value in the encapsulation header preceding the lowpan payload.

If compressing the headers results in alignment not falling on an octet bound-
ary, the remainder after the compressed headers is padded with zeros until the
next octet boundary.

6lowpan currently defines header compression for IPv6 and UDP headers.
For the IPv6 header the HC1 encoding is used and for the next layer protocol
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headers the HC2 encoding can be used. At the moment, the HC2 encoding is
specified only for the UDP header. Compression of TCP and ICMP headers is
to be determined later. HC2 header compression for UDP is called HC UDP.
The HC1 and HC UDP header compression mechanisms will be described in
more detail.

HC1 – IPv6 header encoding

IPv6 header compression is possible even without a context-building phase as
devices already share some state by virtue of having joined the same 6lowpan
network. The following IPv6 header values are expected to be common: the
Version is IPv6, both IPv6 Source and Destination Addresses have a link-
local prefix and the last 64 bits can be inferred from the link-layer addresses
in case the interface identifiers were autoconfigured, the Packet Length can
be inferred from the layer two Frame Length field in 802.15.4 PPDU or from
the datagram size field in the fragment header if present, Traffic Class and
Flow Label are both zero and the Next Header is one of UDP, TCP or ICMP.
Only the 8-bit Hop Limit field always has to be carried in full. Depending on
how well a particular packet matches the described common case, several fields
may have to be carried “in-line”.

An HC1-compressed IPv6 header starts with an 8-bit HC1 encoding field,
which is followed by non-compressed fields. Bits 0− 1 of the encoding field are
used for the IPv6 source address and bits 2− 3 for the destination address. For
each of the addresses, if the first bit is set, the address has a link-local prefix.
Otherwise, the prefix is carried in-line. If the second bit is set then the interface
identifier is derivable from the link-layer address. Otherwise, the lower 64 bits of
the address are carried in-line. If a mesh addressing header is present then the
link-layer addresses from this header have to be used. If bit 4 is set then Traffic
Class and Flow Label are zero. Otherwise, their full 8- and 20-bit values are
being sent. Bits 5 − 6 indicate whether the Next Header is UDP (value 01),
TCP (value 11), ICMP (value 10) or its full 8-bit value is being carried in-line
if the bits are 00. If the last bit is set then HC2 encoding follows immediately
after the HC1 encoding. Then bits 5− 6 also indicate which particular type of
the HC2 encoding follows, i.e. a UDP, TCP or ICMP encoding. If the last bit
is not set, no more header compression bits follow after the HC1 encoding.

The uncompressed fields follow after the HC encoding fields. If HC2 encoding
is present then the uncompressed fields follow after the HC2 encoding field.
Otherwise, they follow immediately after the HC1 encoding field. From the
non-compressed fields, the Hop Limit. Other non-compressed fields, if any,
follow after the Hop Limit field. These have to appear in the same order as
their corresponding bits in the HC1 encoding field:

1. source address prefix (64 bits)

2. source address interface identifier (64 bits)

3. destination address prefix (64 bits)

4. destination address interface identifier (64 bits)

5. Traffic Class (8 bits)
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6. Flow Label (20 bits)

7. Next Header (8 bits)

If the HC2 compression is not used, then after these non-compressed fields
follows the actual next header such as UDP, TCP or ICMP, as specified by the
Next Header field in the original IPv6 header. Using the HC1 encoding, the
common IPv6 header, as described, can ideally be compressed from 40 octets
to 2, where one octet is used for the HC1 encoding and one for the Hop Limit.

HC UDP – UDP header encoding

While the HC1 encoding specifies compression for the IPv6 header, allowing the
Next Header field compression for ICMP, UDP and TCP, further compression of
each of the corresponding protocol headers is possible using the HC2 encoding.
Currently, it is specified only for the UDP header and is referred to as HC UDP.
It only applies if bits 5 − 6 of the HC1 encoding indicate that the protocol
following the IPv6 header is UDP and bit 7 indicates the presence of HC2
encoding. The following fields can be compressed in the UDP header: Source
Port, Destination Port and Length. The UDP Checksum is always carried
in full. While the Length field can be deduced from information available in
other headers, the port fields have to be carried in-line either in full or partially
compressed. The HC UDP uses an 8-bit HC UDP encoding field, which follows
immediately after the HC1 encoding field. If bit 0 of the encoding field is set then
the UDP source port is compressed to 4 bits. The actual 16-bit port number
is calculated as P + short port . P is the number 61616 (0xF0B0). short port
is a 4-bit value carried in-line. If bit 0 is not set then all 16 bits of the port
number are carried in-line. Bit 1 is used for the UDP destination port in the
same way as bit 0 is used for the source port. If bit 2 is set then the Length field
is calculated from the Payload Length in the IPv6 header minus the length of
extension headers between the IPv6 header and the UDP header. Otherwise
the Length field of the UDP header is carried in-line. Bits 3 − 7 are reserved
for future use.

The non-compressed or partially compressed values carried in-line follow
after the in-line values of the HC1 encoding. These have to be in the same
order as they would appear in a normal UDP header, i.e.

1. UDP Source Port (4 or 16 bits)

2. UDP Destination Port (4 or 16 bits)

3. Length (16 bits)

4. Checksum (16 bits)

The HC UDP scheme allows compressing the UDP header from 8 octets to 4 in
the ideal case.

3.3.4 Provisions for meshes

Although 802.15.4 networks are expected to commonly use mesh routing, the
802.15.4 standard [25] does not define such capabilities. Therefore, 6lowpan
specifies provisions required for packet delivery in 802.15.4 meshes. In a mesh
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scenario, devices do not require direct reachability to communicate with each
other. Instead, intermediate devices are used as forwarders towards the final
destination. From the two devices, the sender is known as the Originator and the
receiver as the Final Destination. In order to achieve mesh delivery capabilities,
the link-layer addresses of the Originator and the Final Destination have to
be included in addition to the hop-by-hop source and destination. For this
purpose, the mesh addressing header can be used. In addition, the Sequence
Number field in the broadcast header can be used for detecting and suppressing
duplicate packets.

To just use mesh forwarding, a device does not necessarily have to participate
in mesh routing protocols. While the FFDs are expected to participate as mesh
routers, RFDs can limit themselves to discovering FFDs and using them for all
their forwarding in a manner similar to IP hosts using a default gateway for all
off-link traffic. A full specification of mesh routing such as specific protocols,
interaction with neighbor discovery or controlled flooding are out of the 6lowpan
scope.
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Chapter 4

Implementation

A 6lowpan/IPv6 stack has been implemented in the TinyOS 2.0 operating sys-
tem. It supports the 6lowpan adaptation layer with fragmentation, fragment
reassembly and handling of the Mesh Addressing and Broadcast headers. Also
included are the echo mechanism from the ICMPv6 protocol and the UDP pro-
tocol. The 6lowpan-specified HC1 compression of the IPv6 header and the
HC UDP compression of the UDP header are supported as well as handling of
the uncompressed headers. The implementation is described in detail in Sec-
tion 4.1. Section 4.2 describes how a mote can be used as an 802.15.4 interface
for a Linux PC, allowing to connect wireless sensor networks to the internet.
Testing is described in Section 4.3 and the implementation is evaluated in Sec-
tion 4.4.

4.1 Design overview

4.1.1 Design principles

The goal for the implementation was to support replying to an ICMP echo
request message (ping) and exchanging of UDP datagrams. As there was no
specific application scenario in which the implementation would be used, only
the bare minimum necessary for supporting the two functionality goals was
implemented. Additional and possibly not needed features would mean not
only more time for development, but a more severe consequence in an embedded
scenario would be the increased code size and memory requirements.

There were two main design principles for the implementation:

• The main restriction was to run on the TelosB and MicaZ motes. This
meant that it should not require more than 4KB of RAM, which is the
amount of memory available on the MicaZ platform. Ideally, a sufficient
amount of memory should still be left for the application using the net-
working protocol, rather than wasting all available memory on the network
protocol implementation.

• Easily readable and maintainable code was preferred over optimizing to
squeeze into the least possible amount of memory at the cost of hard to
understand programming construct, hacks and munging of code into a few
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interface UDPClient {
command error_t listen( uint16_t port );

command error_t connect(const ip6_addr_t *addr, const uint16_t port);

command error_t sendTo(const ip6_addr_t *addr, uint16_t port,
const uint8_t *buf, uint16_t len);

command error_t send(const uint8_t *buf, uint16_t len);
event void sendDone(error_t result, void* buf);

event void receive(const ip6_addr_t *addr, uint16_t port,
uint8_t *buf, uint16_t len);

}

Figure 4.1: UDPClient interface

large functions for saving space on the stack. It was also felt that such
optimizations would better be left to the compiler rather than traded for
code readability. Furthermore, the design should allow for adding addi-
tional functionality should a particular application scenario be identified
in the future.

4.1.2 Modules and interfaces

The implementation has been split into two components, the IPC configuration
in file IPC.nc and the IPP module in file IPP.nc. The former is a configu-
ration wiring the necessary components, such as a Timer component, memory
pools and a component for accessing the link-layer, and exporting the inter-
face available to an application. The latter is a module which contains the
actual implementation. The IP.h and IP internal.h header files define the
data types and structures used by the implementation. The former shall be
included by the applications while the latter contains only definitions internal
to the implementation.

Interfaces available to an application are the standard SplitControl inter-
face and the UDPClient interface.

The SplitControl interface shall be used to start and stop the 6lowpan/IPv6
stack.

The UDPClient interface allows an application to use the UDP protocol
with the 6lowpan/IPv6 stack. The interface is defined in file UDPClient.nc
and is shown in Figure 4.1. The interface represents a single UDP connection.
It is defined by the IPC component as a parametrized interface, allowing to
easily multiplex between different UDP connections. An application can register
for listening on a specific port with the listen() command. The connect()
command fixes the remote endpoint for communication to a specific IP address
and port number. After the remote endpoint has been fixed a datagram can be
sent with the send command. Otherwise, the sendTo command allows to specify
also the recipient of the datagram. When sending a datagram, the application
provides a buffer with the payload (buf) and specifies the length of the payload
(len). When sending data, the application has to make sure that the payload
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buffer it has provided, buf, can be used by the IP stack and will not be changed
by the application until the sendDone event is signaled. The sendDone event
notifies the application that the datagram has been sent out. Upon receipt of
a UDP datagram destined for the application, the receive event is signaled.
The IP address addr and the port number port of the remote endpoint, as well
as a pointer to the data buffer with the payload buf and its length len are
provided. The buffer can be used by the application until the event handler
function returns. Afterwards, the buffer will be reused by the IP stack.

4.1.3 Receiving a packet

As the implementation was designed to be easily extendible, each network layer
and protocol is handled by a separate function rather than combining the han-
dling of multiple protocols for the sake of efficiency.

When an 802.15.4 frame is received, an event is signaled by TinyOS. The
implementation is using the Receive interface of the ActiveMessageC com-
ponent provided by TinyOS, which signals the receive() event. The frame
payload is then passed to the lowpan input() function, which determines the
types of headers by checking the 6lowpan-specific dispatch values and processes
the 3 6lowpan-optional headers. These are the mesh addressing, broadcast and
fragmentation headers. Fragment reassembly is also performed in this func-
tion. It is discussed in more detail Section 4.1.6. After a fragment has been
successfully reassembled or if no fragmentation header was present and hence
no fragment reassembly was necessary, the remaining payload starting with
the 6lowpan-encapsulated IPv6 header is passed to the layer3 input() func-
tion. By inspecting the dispatch value preceding the IPv6 header, it learns
whether the IPv6 header is HC1 -compressed or not. If the header is com-
pressed, it is passed to the ipv6 input compressed() function, otherwise the
ipv6 input uncompressed() is passed the remaining payload starting with the
IPv6 header. The ipv6 input ... function inspects the IPv6 header and checks
whether it is destined for the mote. If compressed, decompression of the nec-
essary fields is performed. Based on the IPv6 Next Header field, the corre-
sponding function for processing the next layer is called and the remaining pay-
load starting at the respective header is passed. This is icmp input() for the
ICMP protocol and udp input uncompressed() or udp input compressed()
for the UDP protocol. In case the IPv6 header was HC1 -compressed and the
bit flag indicating the presence of HC2 encoding was set, the UDP header
is HC UDP -compressed and will be handled by the udp input compressed()
function. Otherwise, the udp input uncompressed() function processes the
uncompressed UDP header.

The icmp input() function inspects the ICMP header, verifies the checksum
and possibly initiates a reply to an ICMP echo request. It could also initiate a
reply to a neighbor solicitation packet in a future extension.

The UDP input processing functions verify the checksum and check whether
the received UDP datagram is destined for one of the UDPClient instance used
by the application. In case it is, the receive() event of the UDPClient interface
is signaled to the application. The event includes a pointer to the UDP payload
and length of the payload as well as information about the sender.

Should a check in one of the functions on the input path fail, the next
function for the upper layer is simply not called, the packet is discarded and
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Receive
.receive()

lowpan_input()

layer3_input()

ipv6_input_...()

udp_input_...()

UDPClient
.receive()

802.15.4/AM 6lowpan 6lowpan/IPv6 IPv6 UDP Application

Figure 4.2: Receiving a UDP packet

control is returned back to TinyOS. An example showing the function flow while
a UDP datagram is received can be found in a sequence diagram in Figure 4.2.

4.1.4 Sending a packet

Functions for sending a packet are designed similarly to the ones for receiving
a packet. However, the buffer is filled from the back by prepending headers
for the corresponding layers. The sending of a packet is initiated by the ap-
plication or by the icmp input() function. The application would call the
send() or sendDone() command of the UDPClient interface, resulting in a call
to one of the UDP output functions. These are udp output uncompressed()
and udp output compressed(), depending on whether the UDP header should
be compressed or not. icmp input() would invoke icmp output() in order to
send a reply to an ICMP echo request. The UDP or ICMP output function
would determine the correct IPv6 source address for the packet unless it was
specified by the calling function, calculate the checksum , prepend the header
for the respective protocol to the buffer and call the IPv6 output function.
This can be ipv6 output compressed() or ipv6 output uncompressed(), de-
pending on whether the IPv6 header should be compressed. In contrast to the
receiving case, the choice of calling the compressed or uncompressed version is
done at compile time for both the IPv6 and the UDP headers. The other ver-
sion is then not available at run time. After filling in the IPv6 header, the IPv6
output function appends the complete packet to the send queue and schedules
the sendTask task for sending it. This queue is defined as a global variable.

When sendTask is scheduled to run, it processes the first packet in the
send queue. The task prepends any necessary 6lowpan optional headers and
deals with fragmentation if necessary. If the packet does not fit into one frame,
the correct fragmentation header is added. It then uses the send() function
from the AMSend interface provided by TinyOS’ ActiveMessageC component to
send the 802.15.4 frame. After TinyOS sends the frame, the sendDone event
is signaled. The handler function of this event checks the first packet in the
send queue. If all of its fragments have been sent completely or if no frag-
mentation was needed, it removes the packet from the queue. If more fragments
need to be sent or if there is another packet in the queue, the sendTask is posted
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Figure 4.3: Sending a UDP packet

again. An example showing the function flow for sending a UDP datagram is
shown in a sequence diagram in Figure 4.3.

The reasons for scheduling the sendTask task rather than initiating the
sending of the packet directly are as follows:

• The destination’s link-layer address has to determined before the packet
is sent. This is usually done by using neighbor discovery, which requires
sending a neighbor solicitation packet and waiting for a neighbor adver-
tisement packet to be received. The sending of a packet and waiting for
a reply could not be done without exiting the IPv6 output function and
returning control to TinyOS. The link-layer address is also used by the
HC1 compression of the IPv6 header.

Note that the requirement for initiating the neighbor discovery process
can be mitigated by assuming that the node never initiates a connection.
If a packet is always sent as a response to a received packet, then the IPv6
address to link-layer address mapping can be learned from the received
packet. Hence the node would not have to initiate a neighbor discovery
on its own. Another possibility would be to use a fixed neighbor table
mapping or to use the link-layer broadcast address. The implementation
currently uses the link-layer broadcast address, but the design allows for
doing proper neighbor discovery in a future extension.

• The packet may require 6lowpan fragmentation. This requires sending of
more than one frame. However, after requesting the sending of the first
fragment, the function would have to return control to TinyOS. Only after
the sendDone event of the AMSend interface is signaled can the sending of
the next frame be requested.

• While the fragments of a packet are being sent, another packet may be
received by the radio. By splitting the sending of different fragments into
separate executions of the sendTask task, it is possible to receive a packet
even before all frames of an outgoing packet have been sent. If there is
enough memory and buffer space, the received packet could be processed
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size header

6lowpan optional headers
5− 19 mesh addressing

2 broadcast
4− 5 fragmentation

layer 3 header
41 IPv6 (uncompressed)

3− 41 IPv6 (HC1-compressed)

layer 4 headers
8 UDP (uncompressed)

4− 9 UDP (HC UDP-compressed)
8 ICMP
24 TCP

Table 4.1: Size in bytes of the various headers including the dispatch.

rather than discarded. For example, it may be possible to reply to a
neighbor solicitation, which does not require fragmentation, while sending
a large UDP datagram requiring fragmentation. For example, the TelosB
platform offers more than twice as much memory as the MicaZ platform
and the queuing design allows to trade more memory for being able to
respond to such neighbor solicitation as described in the above example.

A possible disadvantage of the current design are the nested function calls.
Each of the described input/output functions needs to occupy space on the stack
until the last called function returns. However, no problems due to this have
been observed so far.

4.1.5 Buffers

The design of the buffers for representing and handling packets has been a
crucial part of the overall design. Due to the restricted amount of memory and
static memory allocation it is not possible to simply allocate a correctly-sized
buffer when needed.

lowpan pkt t

The design goals were to have a structure for representing packets that could
efficiently accommodate both a short unfragmented packet as well as a long
packet after fragment reassembly. Furthermore, an application intending to
send a UDP datagram provides its own buffer with the UDP payload. This
application-provided buffer should be reused rather than copied into another
buffer in the IPv6 stack. Various headers such as UDP, IPv6 and possibly some
of the 6lowpan optional headers have to be prepended before the application
provided data and the structure should allow for it. The structure meeting these
design goals, named lowpan pkt t is shown in Figure 4.4.

Important factors in the design have been the maximum size of a 6lowpan
payload after fragment reassembly and the size of an 802.15.4 payload. The for-
mer is 1280 bytes while the latter is at most 102 bytes. By adding up the sizes
of the various headers, it turns out that any combination of headers fits into the
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typedef struct _lowpan_pkt_t {
/* buffers */
uint8_t *app_data; /* buffer for application data */
uint16_t app_data_len; /* how much data is in the buffer */
uint8_t *app_data_begin; /* start of the data in the buffer */
uint8_t app_data_dealloc; /* shall IPC deallocate the app_data buffer? */

uint8_t header[LINK_DATA_MTU]; /* buffer for the header (tx)
* or unfragmented 802.15.4 frame (rx) */

uint16_t header_len; /* how much data is in the buffer */
uint8_t *header_begin; /* start of the data in the buffer */

/* fragmentation (tx) */
uint16_t dgram_tag;
uint16_t dgram_size;
uint8_t dgram_offset; /* offset where next fragment starts (tx) */

/* IP addresses */
ip6_addr_t ip_src_addr;
ip6_addr_t ip_dst_addr;

/* 802.15.4 addresses */
hw_addr_t hw_src_addr;
hw_addr_t hw_dst_addr;

uint8_t notify_num; /* num of UDPClient + 1
* 0 for no sendDone notification */

struct _lowpan_pkt_t *next;
} lowpan_pkt_t;

Figure 4.4: The lowpan pkt t structure
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102 bytes of an 802.15.4 payload. Therefore, the lowpan pkt t structure ac-
commodates two types of buffers. One is a statically allocated buffer of size 102
bytes, the header. The other one is a pointer to the application-provided data
buffer, the app data. The app data, is not allocated within the lowpan pkt t
structure, the structure only contains a pointer to it. The app data dealloc
field indicates whether this buffer shall be “deallocated”, i.e. returned to the
pool of available buffers, by the IP stack. For both buffers, there also is a
pointer to the beginning of the data within the buffer and the length of the
data in the buffer. These fields are used e.g. when headers for the various layers
are prepended to the packet.

The lowpan pkt t structure also contains source and destination link-layer
and IP addresses. While wasting some memory, it allows to have the logic for
HC1 compression and decompression of the IPv6 header in one function only.
For sending a packet requiring 6lowpan fragmentation, the datagram tag, size
and offset of the next fragment to be sent are stored within the structure. The
notify num field is used to determine which UDPClient shall be notified once
the packet has been sent. The structure may be used in a linked list, such as
the send queue. This purpose is served by the next field.

Receiving a packet

There is only one packet received at a time and there is no preemption of the
functions processing the headers of the various layers. Therefore, one global,
statically allocated instance of the lowpan pkt t structure, named rx pkt, is
sufficient for representing and processing the currently received packet. In case
an unfragmented packet was received, it certainly fits into the header buffer.
A fragmented packet would after reassembly be stored in the app data buffer.
The buffer would be provided by the fragment reassembly code, as discussed in
Section 4.1.6. In both cases, the beginning of the remaining payload, including
headers, is marked with the header begin pointer and the length indicated by
the header len field. The input functions for processing a received packet then
use the global rx pkt and fill in elements of the structure. These may be used
by functions for higher layers. For instance, the link-layer addresses are used
by the IPv6 input function when decompressing an HC1 -compressed header.
After decompression, the IPv6 addresses are stored in the structure and used
for example by the ICMP input function. The app data dealloc flag may be
used to change the “ownership” of the app data buffer. Should for example the
icmp input() function decide to use that buffer for replying to an ICMP echo
request, it could reset the flag and use the buffer for sending back the same
ICMP data. For an unfragmented packet, the app data field is not used and is
set to NULL. In case the ICMP echo request fits into the header buffer, then
so does also the ICMP echo reply packet.

Sending a packet

For sending packets, there is a pool of lowpan pkt t’s available, the SendPktPool.
The ICMP or UDP output functions simply request one from the pool, fill it
in with data and call the lower layer output function passing a pointer to the
lowpan pkt t as an argument. The reasons for the difference from sending a
packet and the motivations for using a queue are discussed in Section 4.1.4.
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These are the possible need for neighbor discovery before sending the packet
as well as possibly having to fragment the packet. Having the queue allows to
process other outgoing packets while the original packet is waiting for neighbor
discovery. When sending a UDP packet, the application supplied buffer is used
as app data and the headers are prepended to the header buffer. As can be
seen in Table 4.1 and already discussed, all headers certainly fit into this buffer.
Should the sending be initiated as a response to an ICMP echo request which
used the required app data buffer, the app data buffer from the rx pkt is moved
into the outgoing packet, without the need for copying the buffer contents. The
app data dealloc flag is then used to transfer responsibility for returning the
buffer to the buffer pool. The flag would be cleared in rx pkt and set in the
outgoing packet. The returning of the app data buffer to the pool happens at
the end of the lowpan input function in case the owner has not changed, i.e.
the flag is still set, or in the sendDone event handler, after sending all fragments
of the packet, if the buffer was transferred to the outgoing packet.

The size of the SendPktPool is compile time configurable. Changing it
allows to tune the tradeoff between memory consumption and functionality. For
example, with a pool of size one it would not be possible to initiate a neighbor
discovery should it be needed for sending an IPv6 packet. The problem is that
the only packet from the pool would already be allocated for the packet, which
needs the neighbor discovery before being sent. Even if the pool were larger than
one, care should be taken to make sure that the one packet possibly needed for
sending a neighbor solicitation would still be available. Another approach would
be to have a separate packet allocated for that. With a larger pool, it would for
example be possible to queue a reply to an echo request received while sending
a large UDP datagram requiring fragmentation.

Should memory size minimization be the main goal, the rx pkt could be
allocated from the queue as well. The disadvantage of this approach would be
that while the packet is allocated for sending, receiving would not be possible
at all. If a large packet is being sent, packets could not be received until all
fragments are sent and the packet returned to the pool. As received packets
are not being queued, they would be dropped. By having a separate rx pkt,
it is still possible to have the received packet pass up the IP stack and become
inspected.

4.1.6 Fragment reassembly

In order to reassemble a 6lowpan-fragmented packet, a buffer of size up to 1280
bytes is needed. Although the fragment header contains the size of the whole
packet, the absence of dynamic memory allocation in TinyOS does not easily
allow to allocate a buffer of just the right size. Hence, a fragment reassembly
buffer of 1280 bytes was chosen to accommodate for the largest possible case.
The buffers are managed by a pool component, the AppDataPool. Its size is
compile time configurable, allowing to decide how many fragmented packets
can be reassembled concurrently.

For keeping track of which fragments have already been received, a linked
list is used. Elements of this list contain information about the offset and length
of the received fragments belonging to a given datagram. These elements are
also managed by a pool component, the FragInfoPool. By default, there are
fifteen times as many elements as the number of buffers available for fragment
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reassembly. The motivation is that by using the full size of the 802.15.4 frames,
this should be sufficient to reassemble the largest possible packet.

The alternative to the linked list was a bitmap. With offsets of fragments
being always multiples of 8 bytes and the total packet length of 1280 bytes,
a bitmap of 160 bits, or 20 bytes would suffice. The problem with a bitmap,
however, is that the 6lowpan draft requires to determine for an overlapping
fragment whether it differs in offset or length from another already received
fragment. A bitmap would not be sufficient to determine that. Therefore, a
linked list was used.

4.1.7 Addresses

The IPv6 stack has one link-local and one global IPv6 address. The global prefix
used was 2001:0638:0709:1234::/64, allocated from the IPv6 pool assigned
to Jacobs University. Currently, it is hardcoded in the initialization of the IPv6
stack. The interface identifier for both addresses is generated from the device’s
Active Message address, the 16-bit 802.15.4 short address as specified in the
6lowpan draft. This allows a mote to generate its IP addresses from its link-layer
address. However, Duplicate Address Detection and proper autoconfiguration
mechanisms as described in the IPv6 specification have not been implemented.

4.1.8 Link-layer

TinyOS 2.0 does not contain a proper 802.15.4 stack. Its networking is based
on active messages, which are sent in 802.15.4 data frames. The Active Message
header used is identical to the 802.15.4 header except for an additional field AM
Type. As this is in the payload part of the frame, it would not interfere with the
correct functioning of 802.15.4. However, setting this field to a different value
on a per-packet basis is not easily supported by TinyOS. The AMSend interface
used for sending Active Messages is a parametrized interface and hence a differ-
ent component would have to be used for every possible value. Changing this
would require modifying parts the TinyOS code for Active Message processing
and for using the CC2420 radio chipset to not send the AM Type field. As im-
plementing an 802.15.4 stack from scratch would be out of scope of the project,
the choices were to tunnel the 6lowpan payload as Active Messages payload, i.e.
have the AM Type field at the beginning of the 802.15.4 payload or to modify
TinyOS to get rid rid of that field. However, such modifications would still
not guarantee interoperability with other 802.15.4 devices and 6lowpan imple-
mentations. Hence, the easier approach was taken and the 6lowpan payload is
simply tunneled as Active Message payload and prefixed with the AM Type field
in the 802.15.4 payload. Recently, an interoperability frame format has been
defined in [29] to allow coexistence of Active Messages and 6lowpan packets by
using 6lowpan dispatch codes. As the document promises an implementation
to appear soon in the CVS version of TinyOS, it will likely be possible to use
the whole 802.15.4 payload for 6lowpan.

4.1.9 Encountered problems

Debugging a program on the motes has turned out to be rather challenging.
The output such a mote provides are three leds. A more feasible way to obtain
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inline void set_16t(void *dst, uint16_t val)
{

*((uint8_t*)dst) = *((uint8_t*)&val);
*(((uint8_t*)dst)+1) = *(((uint8_t*)&val)+1);

}

inline uint16_t get_16t(void *val)
{

uint16_t tmp;
*((uint8_t*)&tmp) = *((uint8_t*)val);
*(((uint8_t*)&tmp)+1) = *(((uint8_t*)val)+1);
return tmp;

}

Figure 4.5: 16-bit access functions

debugging output is to send messages over the USB interface to a PC. For this
purpose, the printf interface in tos/lib/printf/ of the TinyOS distribution
can be used.

Should the mote crash, the observed behavior is that nothing happens. In
order to detect a such a crash, having a heartbeat led was helpful. For this
purpose a timer was used to toggle one of the leds. Once the mote crashed, the
led was no longer blinking.

An alignment problem was encountered on the MSP430 platform, the TelosB
mote. The MCU requires 16-bit aligned addresses for accessing 16-bit values,
e.g., for the mov.w instruction. However, the msp430-gcc compiler generates
code, which uses such instructions also with non-aligned addresses. The problem
seems to occur when a variable cannot be relocated, because it’s part of a struct
or because the variable has been cast as a pointer into a buffer. By having some
fields in the 6lowpan headers 8-bit and some 16-bit, some addresses simply are
not aligned. The workaround chosen to tackle this problem was to write code
that would surely use 8-bit accesses. For this purpose, the functions get 16t
and set 16t have been defined and used in places where variables likely could
not be relocated and the compiler would generate incorrectly behaving code.
The functions are shown in Figure 4.5. While this workaround has mitigated
the problem for the moment, the right thing to do would be to fix the compiler.

4.2 6lowpan for Linux

Testing the interaction of the 6lowpan/IPv6 implementation with other IPv6 im-
plementations was desired. Being able exchange packets between the mote and
a Linux kernel, for example, would be useful. To facilitate this, a tunneling dae-
mon has been developed to use a mote as an 802.15.4 interface for a Linux PC.
The scenario is shown in Figure 4.6. The mote runs the BaseStationCC24020
application. This is a sample application from the TinyOS distribution. It for-
wards traffic between the 802.15.4 and the USB interface of the mote. The mote
is connected to the PC via the USB interface.

38



serial_tunnel
daemon

tun(4)
interface

linux/BSD
IP stack

serial
interface

mote running
BaseStationCC2420

serial
interface

802.15.4
interface

802.15.4
interface

mote with
a IPv6/6lowpan stack

USB

IPv6 packets
802.15.4

PC

6lowpan-encapsulated
IPv6 packets

(SLIP)

6lowpan-enspaulated
IPv6 packets

IPv6 packets

Internet

IPv6 packets

Figure 4.6: Motes, the tunneling daemon and the Internet
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The tunneling daemon is a C program on the PC. It uses the libmote C
library from the TinyOS distribution for exchanging and interpreting Active
Messages with the mote. As the other endpoint for the daemon serves the tun
interface. This is a virtual network interface allowing a user space process to
read and write packets to it. It is a proper network interface, to which IP
addresses and routes can be assigned and whose traffic is handled by the Linux
kernel. The daemon multiplexes between the USB and the tun interfaces using
the select call. Furthermore, the daemon decapsulates the 6lowpan-encapsulated
IPv6 packets before writing them to the tun interface as the Linux kernel is not
6lowpan-aware. Packets read by the daemon on the tun interface are 6lowpan-
encapsulated and sent to the base station mote over the USB interface. The
mote then forwards them over the radio interface. All processing of the 6lowpan
en- and decapsulation is done by the daemon on the PC rather than on the
computationally and memory constrained mote acting as the base station. The
tun interface is a layer3 interface. Therefore, the kernel does not offer all of the
neighbor discovery functionality for it. Neighbor solicitation, for example would
have to be done by the daemon. Instead of implementing neighbor discovery,
packets were simply sent to the 802.15.4 all-ones broadcast address.

A sample configuration used for testing was to use the global prefix
2001:0638:0709:1234::/64, allocated from the Jacobs University IPv6 pool.
The mote attached to the PC had the 16-bit 802.15.4 address 12 in hexadecimal.
The tun interface was assigned the global IPv6 address 2001:0638:0709:1234::fffe:12
and the link-local address fe80::fffe:12, corresponding to the autogenerated
interface identifier for the 802.15.4 address. Other motes used also addresses
with the 2001:0638:0709:1234::/64 prefix. MTU of the tun interface was set
to 1280, which is the 6lowpan-offered MTU and the minimum required by IPv6.
This has allowed to directly use the standard Linux commands such as ping6
or nc6 for testing. For testing the link-local addresses, it was convenient to dis-
able other interfaces on the PC to make sure that packet destined to link-local
addresses would be forwarded to the tun interface and reach the motes.

4.3 Testing

For testing the implementation, a TelosB mote was attached via USB to a Linux
PC and the daemon described in Section 4.2 was used. Two other TelosB motes
and a MicaZ motes were flashed with an application using the implemented
6lowpan/IPv6 stack. The application implemented a minimal telnet interface
over UDP, listening on port 1234. The telnet interface offers commands to
toggle the leds and activate the speaker on the MTS300 board of a MicaZ mote.
Furthermore, commands to request sending back both short data not requiring
6lowpan-fragmentation and long data that needs to be fragmented are available.

Testing the implementation consisted of sending ICMP echo requests to the
global and link-local addresses of the motes, as well as to the link-local all nodes
multicast address. To send the echo requests, the ping6 command was used with
the -s option to prevent fragmentation of the packets. The motes have correctly
replied to the echo request for each of the addresses. The implementation on
the motes was modified to toggle an led when replying to an echo request to
check whether the right mote has actually sent the reply. In this way the ICMP
echo implementation was tested.
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Leaving ping6 running for longer periods of time seemed to work for several
hours. Afterwards, the base station mote crashed. However, rebooting it solved
the problem without having to touch in any way the other motes or the daemon
on the PC. The problem likely lies within the base station application itself.

UDP protocol implementation was tested using the nc6 command with the
-u switch to connect to each mote’s UDP port 1234 and use the telnet interface.
Besides toggling leds, data was requested to be sent back. The length of the data
was modified to test also fragmentation of packets on the way from the mote to
the PC. It was found to work correctly for all tested sizes, from two fragments up
to the full MTU of 1280 bytes. The UDP payload contained structured data to
check whether the fragment reassembly code really reassembled the fragments
correctly. Furthermore, the UDP checksum was verified by the udp layer input
processing. The motes could also cope with several ping6 commands running
in parallel or with a request for the 1280 bytes long UDP packet while a ping6
program was sending echo requests and the motes were replying back. The
default interval of one second between sending requests was used. The tests have
successfully been performed with both, the HC1 and HC UDP compressions
enabled and disabled.

In order to test fragmentation reassembly on the motes, the -s switch of
the ping6 command was used to send larger packets. The reassembly on the
mote was found not to work correctly for every packet, with increasing chance of
malfunction for larger packets requiring more fragments. While an implemen-
tation bug could be the reasons, it was observed that with increasing number
of fragments, not all of the fragments have arrived at the destination mote. As
only one reassembly buffer was used by the mote, it was then necessary to wait
for the timeout for the fragments to be discarded so that another packet could
be reassembled. One possible cause could be that the packets may have been
sent over the USB interface to the base station mote faster than it could for-
ward them over the radio interface. While a mote is re-posting the sendTask
for sending several fragments, the daemon on the mote simply writes all the
fragments to the USB interface in a while loop without waiting. Nevertheless,
the mote was able to reply to some of the ping requests of various size and dif-
ferent roundtrip times were measured for different numbers of fragments. The
average roundtrip times from these successful replies are plotted against the
number of fragments needed for the packet in Figure 4.7. To vary the size of the
ping packets, the -s switch was used. The plot suggests that the time needed
to deliver a packet increases linearly with the number of fragments the packet
is split into. The measured times need not necessarily be caused by a delay
on the radio interface, as the packets were forwarded by the base station mote
over the USB interface and processed by the daemon. These all could also have
contributed significant delays.

4.4 Evaluation

The implementation of the 6lowpan/IPv6 stack runs on both the MicaZ and the
TelosB motes. Using the daemon on the PC and a mote as the base station,
it is possible to exchange IPv6 packets between the motes and a PC. In case
IP forwarding is set up on the PC and a properly assigned and routable global
IPv6 prefix is used, the motes are reachable from the global Internet.
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Figure 4.7: Ping round-trip times

The implementation is capable of replying to ICMP echo requests and ex-
changing UDP datagrams. For demonstrating the latter, a simple UDP com-
mand line interface application has been written for the mote. Fragmentation
and fragment reassembly have been implemented. Fragmentation of packets
has been found to work correctly for packets of various sizes when sent from
the motes to the testing PC, up to packets of 1280 bytes. However, fragment
reassembly on the mote was found to work sporadically as not all fragments leav-
ing the PC seemed to have arrived at the mote. The exact cause of the problem
has not been determined. The implementation was found robust enough to keep
replying to ICMP echo requests for several hours.

The implemented 6lowpan header compression is lacking support for non-
zero flow labels and traffic classes and for compression of UDP port numbers.
These would result in the inline-carried fields not being aligned on byte bound-
aries and hence were not implemented.

Although the implementation supports the ICMP echo mechanism and the
UDP protocol, many features required for IPv6 implementations are missing.
Among others, the Neighbor Discovery has not been implemented and packets
are broadcasted on the link-layer, IPv6 extensions headers are not processed,
IPv6 fragmentation is not supported and ICMP error messages are not gener-
ated. While many of these could be added, it is unclear whether they make sense
in an embedded system. For example, is one willing to trade decreased battery
life for regular neighbor advertisements or neighbor unreachability detection?
Or if an error is encountered while processing a received packet, should a 1280
bytes long ICMP error message be sent back? Should one be sent back at all?

The design goal of the implementation was to write easily extendible code

42



rather than optimize for smallest possible code size and memory usage. The
6lowpan/IPv6 stack compiled with TinyOS 2.0 and the testing application re-
quires 21900 bytes of ROM and 2906 bytes of RAM. Should optimization for
code size or memory requirements be needed in the future, unnecessary code
can be removed. For example, an embedded system does not have to support
both compressed and uncompressed headers. The rather general data structures
could be replaced with ones tailored to the specific application scenario. For ex-
ample, TinyOS currently uses only the short 16-bit 802.15.4 addresses. Hence,
the structure representing a hardware address could be changed to a 16-bit type
rather than supporting also the long types of 802.15.4 addresses. With more
effort, the code could be restructured to heavily optimize for space at the cost
of readability by putting the code, which has been split across several function,
into one large function and using goto statements.

Should a system offer more memory, the number of buffers available for frag-
ment reassembly and the size of the pool for outgoing packets can be modified
at compile time.
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Chapter 5

Related work

As preparation for the project, several related areas have been studied in more
depth. Other 6lowpan implementations and IPv4 implementations are described
in Section 5.1. Section 2.1 gives an overview of several alternative hardware
platforms and operating systems suitable for wireless sensor network scenarios.
Chapter 5.3 provides a short overview of alternative link layers (PHY and MAC)
facilitating the communication in a wireless sensor network. The 802.15.5 mesh
extensions are descibred in Section 5.4. Various modifications to make TCP/IP
more viable for wireless sensor networks are discussed in Section 5.5. The Delay
Tolerant Networking approach, covered in Chapter 5.6 may also be applicable
to wireless sensor networks.

5.1 IP stack implementations for WSNs

5.1.1 6lowpan implementations

Several 6lowpan implementations for wireless sensor network mote platforms
have been announced while this project was in progress.

The Arch Rock company has announced a commercial 6lowpan implemen-
tation Primer Pack/IP in March 2007. The implementation is for TinyOS 2.0.
As this is a commercial implementation, technical information is scarce.

The Sensinode company has released a GPL-licenced 6lowpan implementa-
tion called NanoStack v0.9.4 in April 2007. It is claimed to be up to date with
version 12 of the 6lowpan format draft and to include IEEE 802.15.4 Beacon-
mode support. The source code, however, does not seem to include 6lowpan
fragmentation support and UDP checksumming. Furthermore, the source code
seems to implement a compression scheme of the UDP port numbers from an
older 6lowpan format draft, version 6.

5.1.2 uIP

uIP[16] is a TCP/IP stack implementation by Adam Dunkels. It runs on 8-bit
controllers with a few hundred bytes of RAM. Only the minimal set of features
needed for a full TCP/IP stack is implemented.

uIP deals with IPv4 only. It can only handle a single network interface. IP
fragments are reassembled only for one packet at a time and they are dropped
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if not all segments are received within a specified time limit. From the ICMP
protocol only echo has been implemented. Features such as Path MTU discovery
or ICMP redirect are not supported. Opposed to the BSD socket API, the
TCP API is event driven. This fits well into the TinyOS API design. There
is no sliding window support as only one TCP segment per connection can
be unacknowdledged, i.e. in flight. However, it should be noted that sliding
window support is not required by the TCP specification. Another drawback
of allowing only one unacknowledged packet is the negative impact of delayed
acknodledgements[8]. A TCP receiver using delayed acknowledgements sends
an acknowledgement only for every other received segment or in a time frame
of at most 500ms if only one segment has been received. As uIP only sends one
segment at a time, the receiver waits for as long as 500ms before acknowledging
it. With only one TCP segment can be in-flight, congestion control mechanisms
are not needed. The sent TCP segment is not buffered by the TCP stack and
if retransmission is needed, the application is called. The UDP protocol is also
supported.

The uIP implementation complies with all the TCP/IP requirements deal-
ing with host-to-host communication as specified in RFC1122 [4], but falls short
on the requirements for communication between the networking stack and the
application. While additional care has to be taken when developing applica-
tions using uIP, no incompatibilities should arise when the uIP implementation
communicates with other TCP/IP implementations.

The uIP implementation has been ported to TinyOS 1.1 by Andrew Chris-
tian from the Hewlett-Packard Company. It is available in the
tinyos-1.x/contrib/handhelds/tos/lib/UIP/ directory of the TinyOS 1.1
distribution.

5.1.3 Proxy

While an IP stack can be implemented on the motes, it is also possible to use
a proxy-based scheme. In this case a special proxy server is employed as a
gateway between the sensor network and the IP network. As all communication
between clients from the IP network and sensor network goes via the proxy, the
two networks are separated and the communication protocol within the sensor
network can be freely chosen. Usually the TCP/IP protocol suite is used in
such scenarios

The proxy can operate as a front-end or as a relay. In the former case, the
proxy acts as a front-end for the sensor network, pro-actively collects data from
the sensor nodes and stores the data in a database. Clients from other networks
then query the proxy for sensor data. In the latter case, the proxy relays data
between sensor nodes and TCP/IP hosts, possibly translating TCP/IP packets
to a custom protocol used within the sensor network. Two such approaches, the
Sensor Internet Protocol the Serial Forwarder will be described in more detail.

It should be noted that a proxy can also be useful when sensor nodes natively
support TCP/IP. Here, the proxy can offload the sensor nodes from resource-
intensive tasks such as fragment reassembly. One such approach is described in
[18].
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Sensor Internet Protocol

The Sensor Internet Protocol (SIP) [33] is a proxy-based scheme for connecting
wireless sensor networks with TCP/IP networks. The sensor nodes do not have
any IP support. Instead, TinyOS Active Messages [21] are used within the
wireless sensor network. An intermediate agent, a proxy, is acting as a gateway
between external TCP/IP hosts and the Active Messages-based wireless sensor
network. This proxy is assumed to be a more powerful device, which is not
subject to severe computational and memory constraints such as the sensor
nodes. The main motivation is to shift the burden of TCP/IP processing away
from the motes onto the proxy.

As the motes do not have any notion of the TCP/IP protocol suite, the
proxy translates between TCP/IP packets and Active Messages. In order to
map IP addresses to actual node IDs, the proxy maintains a table with the
corresponding mappings between IP addresses and node IDs. As IP fragment
reassembly may consume a lot of resources, it is performed on the proxy. The
Active messages used in TinyOS are limited to several tens of bytes, so the
TCP/IP payload maybe be too large to fit into a single Active Message. This is
left as an open problem in [33]. In general, IP options are dropped. The proxy
handles also the ICMP, UDP and TCP protocols.

From the ICMP protocol, only echo, i.e. reply to ping is implemented. The
reply is generated at the proxy rather being routed via the sensor network.
Features such as Path MTU discovery or redirect are not supported.

As UDP is a connection-less datagram-oriented protocol, the translation is
rather simple. However, for TCP the state of each connection has to be kept
in the proxy. Furthermore, several optimization are done for the TCP protocol.
The proxy acknowledges data on behalf of the motes. As the acknowledgement
is sent prior to delivering data to the actual sensor, undelivered data may be
acknowledged. While reducing round-trip times, this may be a problem with
TCP/IP standards compliance as data that would never be delivered to the
end host becomes acknowledged. The proxy also buffers and reorders TCP
segments to the correct sequence. Restricted buffer space on the motes is taken
into account and data may be queued on the proxy. Should transmission of
data to the sensors be deferred, appropriate TCP congestion mechanisms and
Explicit Congestion Notification are used. Finally, the burden of maintaining
the TCP connection state is taken over by the proxy. It handles the opening
and closing of TCP connections as well as TCP retransmissions. As with IP
options, TCP options are also removed. It is assumed that the sensor nodes do
not actively open connections and only accept incoming connections.

While not implementing the full TCP/IP functionality and ignoring TCP
and IP options, the described scheme allows for basic TCP/IP communication
between wireless sensors and external TCP/IP hosts. The communication is
possible without modifying the wireless sensors or the external TCP/IP hosts.
By moving most of the resources demanding tasks away from the tiny motes to
the proxy, little resources are wasted on the sensor nodes.

Serial Forwarder

It should be noted that an even simpler proxy approach exists, but requires
external hosts to be aware of the special communication protocol used within
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the sensor network. All TinyOS Active Messages from external hosts are en-
capsulated into TCP/IP packets and forwarded by a gateway into the sensor
network. An implementation is included with TinyOS under the name serial
forwarder. The serial forwarder listens on a single IP address and TCP port.
Active Messages are encapsulated as the TCP payload and forwarded by the
proxy between the sensor network and the external IP network. As in the case
of the previously described SIP, the sensors are not TCP/IP-aware. However,
in contrast to SIP, this approach requires that applications on external hosts
are aware of the Active Message protocol details and node IDs. An extension
of the serial forwarder implementation to support IPv6 is described in [38].

5.2 Operating systems and platforms

The mostly commonly used platform for wireless sensor networks are the tiny
motes, such as TelosB and MicaZ, running the TinyOS system. An alterna-
tive operating system for these platforms, Contiki will be described. Besides
the motes, other embedded hardware platforms suitable for wireless sensor net-
work scenarios are RoboCube-based platforms running the CubeOS system and
embedded devices running a UNIX-like system, such as Linux.

5.2.1 Contiki

Contiki is an open source operating system for memory-constrained networked
embedded systems. It is written by Adam Dunkels from the Swedish Institute
of Computer Science.

In contrast to the more academic approach of TinyOS in defining a new
programming language, nesC, the contiki operating system has taken a more
pragmatical approach by using C macros. It includes the uIP TCP/IP stack
and allows dynamic loading and unloading of modules sent over TCP/IP using
an elf loader. Contiki is designed for embedded systems with small amounts of
memory. It requires 2KB of RAM and 40KB of ROM in default configuration.

5.2.2 RoboCube and CubeOS

RoboCube [2], [3] is an embedded hardware platform used mainly in robotics.
It is based on the Motorola MC68332 processor and has 1 MB of RAM and
1 MB of flash-EPROM. The hardware design involves various boards, such as
processor-, bus- and I/O-boards, which can be stacked on top of each other
to form an embedded system. A board’s size is 77x86 mm. The bus-board
provides SPI and I2C controllers, allowing to attach various sensors. In a typical
robotics scenario, energy for electric motors of the robot based on a RoboCube
system is also supplied from the battery, resulting in lower battery life time. For
example, battery life time of the RoboCube systems used in the Robotics Lab
at International University Bremen is in the order of hours rather than years.

CubeOS [2] is an operating system for the RoboCube platform. It is a small,
embedded, real-time operating system providing preemptive and cooperative
multi-threading; thread create, suspend, resume, sleep and kill functions; IPC
with signals, semaphores and message queues; data primitives such as lists and
buffers; control primitives such as reactive and PID control; sensor and actuator
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abstraction; layered radio communication protocol; real-time clock; and various
device drivers. CubeOS consists of about 30 KB of binary code and the modular
design allows to compile together only the necessary components for a specific
RoboCube hardware configuration.

The robotics framework is further aided by the RobLib library building on
top of the CubeOS system. It provides medium to high level functions for motor
control and supports dead-reckoning and motion control.

Although the RoboCube platform with CubeOS system is used mainly in
robotics, it could be equipped with various sensors and used also in wireless
sensor network scenarios.

5.2.3 Unix-like systems

Several UNIX-like operating systems such as Linux or NetBSD are available
also for various embedded platforms. Using these operating systems may be an
appealing alternative to a custom operating system given the plethora of readily
available applications.

For example the SeNDT project [39] at Trinity College Dublin uses an Intel
XScale-based platform with 64 MB RAM and 64 MB flash memory running
ARM Linux in a wireless sensor network application for monitoring lake water
quality. The battery life of these devices reaches half a year.

It should be noted that a port of the Linux operating system, named uCLinux,
exists also for several architectures without a memory mapping unit. Hence, the
Motorola MC68332-based RoboCube platform could also use the Linux operat-
ing system rather than CubeOS.

5.3 Alternative link-layer standards

While 802.15.4 is clearly targeted at and suitable for limited devices such as the
tiny motes, several other standards or protocols could also be used in wireless
sensor networks. This section shortly discusses these alternatives.

The early motes were not using any standardized PHY and MAC layer pro-
tocols. For example, the Mica2 mote from Crossbow Technologies features a
Chipcon CC1000 radio chipset, using two-tone Frequency-Shift-Keyed (FSK)
modulation at 433 and 868-915 MHz supporting data rates up to 38.4 kbps. In
the case of TinyOS, the operating system provides an addressing scheme and
takes care of physically transmitting messages over the medium without any
standardization of the PHY or MAC layer protocols. Interoperability basically
requires using the same operating system and cross-vendor hardware compati-
bility is unclear.

The IEEE 802.11 family provides several standardized protocols (802.11a,
802.11b, 802.11g) for wireless communication and compatible devices are widely
used. However, these protocols provide unnecessarily high range and data rates
for wireless sensor network scenarios, resulting in high energy demands for wire-
less communication. Therefore, they are not well suited for the tiny motes with
limited resources and battery power.
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5.4 Mesh networking – 802.15.5

Mesh networking is a mechanism providing multi-hop routing within the link
layer. Within a wireless network, where not all nodes necessarily have connec-
tivity to the next-hop router, IP routing would not be suitable. However, using
multi-hop paths over intermediate nodes, the range of wireless networks can be
further increased without modifications to the IP layer. A plethora of mesh net-
working protocols has been developed for mobile ad-hoc networks (MANETs)
and a description of the more than 70 different protocols is beyond then scope
of this document. However, the IEEE is developing the 802.15.5 standard for
mesh networking in 802.15 WPANs, which will be described in more detail.

The IEEE 802.15.5 working group is chartered with providing Mesh Network-
ing support for 802.15 WPANs. By combining Samsung and Philip’s proposal,
a draft for the baseline document has been created. While not all details have
been resolved yet, the document provides some insights how Mesh Network-
ing will be enabled for both the high data rate 802.15.3 and the low data rate
802.15.4 WPANs. For wireless sensor networks, the extensions for 802.15.4 may
be relevant and hence will be described more closely.

Mesh networking for 802.15.4 is enabled by using the adaptive robust tree
(ART) and the meshed ART (MART) mechanisms. In an ART, nodes are
organized into a tree form. Each branch of the tree is assigned a block of
consecutive addresses. Nodes keep information about nodes in their branches
and use this information for routing decisions. The ART has three phases,
initialization, normal and recovery phase.

During the initialization phase, nodes join the network and a tree is formed.
This phase is functionally divided into two stages, association and address as-
signment. During the association stage nodes gradually join the network and
a tree is formed. To allow nodes to limit the number of children it is willing
to accept and to balance the number of children among nodes, an acceptance
degree (AD) is used in response to an association requests. The AD has one of
the four values: 3 – accept without reservation, 2 – accept with reservation, 1
– accept with reluctance and 0 – reject. An associating node should choose the
node with the highest AD response.

After a branch reaches its bottom (a suitable timer can be used for this
purpose), the number of nodes in that branch is counted in a down-to-top way.
Whenever a node joins the network, it starts a timer. If no other node joins
before the time expires, the node becomes a leaf node and sends a children
number report frame to its parent. After a non-leaf node has received the
report from all its children, it reports to its parent by summing up all children
requests and its own requests. The node and requested addresses counting
is illustrated in Figure 5.1. Within the report frame nodes also indicate the
number of requested address. The possibility of allocating more addresses than
nodes allows for a small number of nodes joining the network later.

After the root node receives information from all its branches, the address
assignment stage starts. The root node assigns consecutive blocks of addresses to
the branches and the addresses are distributed to the nodes in a top-to-bottom
manner. After the address assignment is finished, a logical tree is formed and
each node has a block addressing table (BAT) for tracking the branches below
it.

After the initialization phase, the normal phase is entered. In this phase
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Figure 5.1: Calculating the number of nodes along each branch in an ART
structure. The numbers indicate number of children within each branch. Image
taken from [27].

normal communication can start. The BAT table is used for routing decisions,
i.e. to determine the next hop from a packet’s destination address. If the des-
tination address is not in one of the branches, the frame is forwarded to the
parent. Small numbers of nodes can still join the network during the normal
phase. For larger changes in the number of nodes or the tree topology, the tree
has to be initialized again. Link and node failures can trigger the recovery phase
for affected parts of the tree, with the rest of the tree continuing in the normal
phase.

The ART structure can be extended to a Meshed ART by allowing con-
nections between neighbors as illustrated in Figure 5.2. For this, the nodes
broadcast hello messages to learn their neighbors and construct a connectivity
matrix. Compared to an ART, the MART allows shorter routes and eliminates
some single points of failure.

The [27] document details out the mechanisms, frame formats as well as an
extension for multicast mesh routing.

5.5 TCP/IP optimizations for wireless sensor
networks

In order to make TCP/IP more viable for wireless sensor networks several opti-
mizations are suggested by the people involved with uIP in [17] and [5]. These
optimizations will be described in more detail.

In large scale sensor networks, manual configuration of IP addresses would
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Figure 5.2: Meshed ART - the black lines represent links in an ART while the
magenta lines represent the additional connections in a MART. Image taken
from [26].

not be feasible and the DHCP mechanism is rather expensive in terms of required
communication overhead. However, as sensor nodes can be assumed to know
their location, a spatial IP address assignment scheme would be possible. For
example, the (x, y) location coordinates could be used as the two least significant
octets of an IPv4 address. Furthermore, such a spatial addressing scheme would
easily allow for regional broadcast mechanisms.

Energy savings can also be achieved by employing header compression mech-
anisms. As nodes in a sensor network usually share a common context, they
could agree on common header fields. This would allow for efficient header
compression mechanisms, reducing overhead and saving energy by having to
transmit less data using the radio interface. A UDP/IP header compressor has
been implemented reducing the UDP/IP header from 28 to 3 bytes [17].

The standard TCP/IP is known to have serious performance problems over
wireless links [1]. The throughput problem has been addressed by e.g. the Snoop
mechanism [1]. However, the low-power and energy-efficiency requirements of
sensor networks add further constraints. The end-to-end retransmission mech-
anism employed by TCP is rather energy-inefficient in lossy wireless networks.
In a multi-hop network, the retransmitted segment has to be forwarded by all
intermediate nodes between the sender and the receiver, wasting energy at every
hop. To alleviate this problem, the Distributed TCP caching (DTC) and TCP
Support for Sensor Nodes (TSS) schemes have been proposed.
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DTC

To avoid energy-costly end-to-end retransmissions TCP segments are cached at
intermediate nodes between the sender and the recipient. A segment is retrans-
mitted from an intermediate node having a copy of the lost segment in case
of packet loss. Due to constrained resources of sensor nodes, each node caches
only one segment. This is the segment with the highest sequence number seen
so far with a certain probability. The probabilistic approach allows for older
segments to be cached in the network as well. Only segments presumably not
received by the next hop node are cached. Two mechanisms are available for
detecting packet loss at the next hop. Either the link layer supports positive
acknowledgements or the node overhears its successor transmitting the segment
further. If a segment is presumed to be lost in transit, it is locked in the cache
indicating that it should not be overwritten by another segment with a higher
sequence number. A locked segment is removed from the cache upon receiving
a TCP ACK acknowledging the cached segment or when the segment times out.

To avoid end-to-end retransmissions, DTC needs to respond to packet loss
faster than the standard TCP. For this purpose DTC nodes maintain a soft TCP
state for connections passing through them, measure the round-trip time (rtt)
to the receiver and use a retransmission timeout of 1.5 rtt. The timeout value
is then smaller for nodes closer to the receiver, allowing for the intermediate
nodes to retransmit before the sender would do so. A retransmission timer is
set when a segment is locked in the node’s cache.

The TCP SACK option is used for both packet loss detection and as a
signaling mechanism between DTC nodes. Upon reception of a TCP ACK with
a smaller acknowledgement number than the node’s cached segment’s sequence
number (cached), following actions are performed.

1. If cached is not in the SACK block, the cached segment is retransmitted
and cached is added to the SACK block. If this action fills all gaps in the
SACK block, the acknowledgement can be dropped. However, a new ACK
acknowledging all segments from the SACK block should not be generated
as the receiver is allowed to discard a previously SACKed segment.

2. If cached is in the SACK block, the node can clear its cache as either
the receiver has already received the cached segment or it is cached and
locked by another node closer to the receiver.

Note that even if the sender or receiver does not support the SACK mechanism,
the DTC nodes might add or remove the SACK option to enable SACK signaling
for DTC.

While TCP data segments are cached, TCP ACKs are not cached as they
can be easily regenerated. When an intermediate node encounters a TCP data
segment, for which is has already forwarded a TCP ACK, it assumes the TCP
ACK has been lost. Therefore, it does not forward the data segment and regen-
erates a corresponding TCP ACK.

To further aid DTC, the recipient may announce a small maximum segment
size to avoid large TCP segments exceeding the sensor nodes storage capacity
and announce a small window size to decrease the number of segments in flight.
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TSS

Similarly to DTC, TSS tries to reduce the number of end-to-end retransmis-
sions by caching TCP segments at intermediate nodes. However, it is com-
pletely based on TCP ACKs, so no link level acknowledgements are required. A
segment is not forwarded until the successor has received all previous segments.
This also prevents packet reordering, avoiding the need for resequencing buffers.
Like with DTC, TCP segments are cached at intermediate nodes. A node al-
ways caches the TCP segment containing the first byte of data that has not yet
been acknowledged or forwarded by the successor node towards the destination.
A node knows that the successor has received a segment when it overhears the
successor forwarding the segment further or the successor spoofs a TCP ACK
acknowledging that segment. A segment known to be received by the successor
will be removed from the cache. As with DTC, the cache holds only one packet.
However, a buffer is required for temporarily storing packets waiting to be for-
warded to the successor node. As with DTC, a retransmission is triggered by a
timeout of 1.5 rtt.

TCP ACKs are not cached, but two mechanisms are employed to regenerate
them. One is the same as used by DTC. The other one uses a timeout for
acknowledgement regeneration if it does not overhear the acknowledgement to
be forwarded by the successor node towards the TCP sender. The timeout is
twice the average time measured between transmitting an acknowledgement to
the successor and the successor forwarding it further.

For both DTC and TSS to work, no protocol changes are required at the
sender or the receiver. However, symmetric and relatively stable routes are
assumed for correct functionality. Furthermore, acknowledgements are modified,
dropped and recreated in non-standard ways.

5.6 DTN

The delay- and disruption-tolerant interoperable networking (DTN) embraces
an occasionally connected network that may suffer from frequent partitions and
may be composed of more than one divergent set of protocol families. The basis
of the architecture comes from the Interplanetary Internet [28], which focused
on deep space communication in high-delay environments. Such architecture
can among others readily be extended to occasionally connected networks such
as sensor-based networks using (scheduled) intermittent connectivity and ter-
restrial wireless networks where end-to-end connectivity cannot be maintained.
The DTN architecture is formally specified by Internet drafts from the DTNRG
research group within the IRTF. A higher-level overview can be found in [41],
[19] and [6].

The DTN architecture defines an end-to-end message-oriented bundle layer.
This layer exists above the transport layers of the underlying networks and be-
low the application layers. Devices implementing this bundle protocol are called
DTN nodes. The bundle layer employs persistent storage to deal with network
interruptions. It involves a reliable hop-by-hop transfer of reliable delivery re-
sponsibility and an optional end-to-end acknowledgment scheme.

Applications send so called Application Data Units (ADU), where each ADU
is transformed into one or more bundles. The relative order of the ADUs might
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not be preserved during transfer. The bundles wait in a queue until a commu-
nication opportunity is available. Hence, a sufficient amount of storage has to
be available. This storage has to be persistent and robust in order to survive
application and operating system restarts and crashes.

5.6.1 Endpoint identifiers (EID)

In order to identify the communication endpoints, variable-length endpoint iden-
tifiers (EDI) are used. Each node has at least one unique EID. These use the
general syntax of URIs. An EID is composed of a scheme and a scheme-specific
part (SSP). The interpretation of an SSP is defined by the respective scheme.
In contrast to DNS name to IP address early binding, EIDs use late binding.
Hence, the binding does not necessarily happen at the source and it might be
the case that the mapping for an EID is not known at the time the transmission
is started. An application wishing to receive traffic for a specific EID has to
register for that EID. Such a registration is persistent in the sense that it sur-
vives reboots. Furthermore, a registration may fail. For example, an attempt to
register for an invalid EID would fail. An EID refers to a set of DTN nodes and
a node can determine from an EID the minimum reception group (MRG) of an
EID. The MRG is a minimum set of nodes, to which a bundle must be deliv-
ered in order to complete the data transfer. This allows to use EIDs for single
nodes as well as for multicast and anycast groups. Due to the possible delays
in receiving a registration for a multicast group EID, some nodes may have to
act as archivers of multicast messages in case someone joins the multicast group
later.

5.6.2 Priority classes

Several priority classes are defined. In increasing importance they are bulk, nor-
mal and expedited. First, bundles of higher priorities are transmitted. However,
the prioritization affects only bundles from the same source. Optionally, nodes
may enforce prioritization even across different sources.

5.6.3 Delivery options

Applications can set various delivery options for ADUs. The delivery options
can be used to track the transfer of bundles, request various additional and
diagnostic information, an end-to-end acknowledgment, custody and several se-
curity features such authentication (signing), confidentiality (encryption) and
error detection (signatures to detect modifications). The security-related op-
tions are optional and only apply if security is enabled. A listing of all available
options can be found in Table 5.1. In response to bundles with some of the
above mentioned options set, bundle status reports are generated. These pro-
vide information and diagnostic responses, corresponding to the ICMP protocol
in IP [37]. However, in contrast to ICMP, bundles contain an additional field
for a report-to EID in addition to source and destination EIDs. This report-to
identifier may be different from the source identifier.
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Custody Transfer Requested
Source Node Custody Acceptance Required
Report When Bundle Received
Report When Bundle Custody Accepted
Report When Bundle Forwarded
Report When Bundle Delivered
Report When Bundle Deleted
Report When Bundle Acknowledged By Application
Confidentiality Required
Authentication Required
Error Detection Required

Table 5.1: DTN Delivery Options

5.6.4 Custody transfers

The most basic service provided by the bundle layer is unacknowledged unicast
message delivery. The delivery reliability can be enhanced by requesting cus-
tody transfers. Custody transfer means moving the responsibility for reliable
delivery of an ADU’s bundles among different DTN nodes. This is similar to
moving responsibility for email messages between different email servers using
the SMTP protocol. A node accepting a custody transfer is called a custodian.
It has to make sure that the bundles are stored in persistent storage and can
only remove them once the custody has been successfully transferred to another
node. If a node accepts a custody transfer, a Custody Transfer Accepted Signal
is sent back to the previous custodian. The new custodian then updates the Cus-
todian EID field in the respective bundle(s) before it is forwarded further. Note
that not all nodes are required to accept a custody transfer. This may happen
if e.g. a node would not have sufficient storage space. The decision of accept-
ing a custody transfer is based on solving a resource allocation and scheduling
problem. In general, applications do not have to request custody transfers. The
successful delivery of bundles relies on the reliability mechanisms of the under-
lying protocols below the bundle layer. With custody transfer requested, the
bundle layer provides an addition timeout and retransmission mechanism and
a custodian-to-custodian bundle-layer acknowledgment scheme.

In a network with strictly one-directional custodian-to-custodian hops, the
custody transfers will not be acknowledged as there is no way to back-signal the
custody transfer acknowledgments. For this case, a mechanism is provided to
ameliorate the incorrect information that a bundle has been lost. If the option
“Report When Bundle Forwarded” is set, the nodes would report the existence
of a known one-way path using a bundle status report.

5.6.5 Contact types

The DTN architecture provides also a framework for routing and forwarding for
unicast, anycast and multicast bundles. Links between nodes can have varying
delay and capacity over time. Furthermore, some links be one-directional only.
The period of time when a link’s capacity is strictly positive is called a contact.
If contacts and their capacities are known ahead of time, smart routing and
forwarding decisions can be made. Handling situations with lossy delivery paths
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or unknown contact intervals or capacities are still an active research area.
Based on predictability of performance characteristics, contacts can be divided
into following categories:

persistent – always available, such as DSL or cable modem connections

on-demand – an action has to be taken to initiate contact, but then acts as a
persistent contact. An example would be a dial-up connection.

intermittent - scheduled – the contact schedule is known ahead of time, such
as with a low-earth orbiting satellite

intermittent - opportunistic – contacts presenting themselves unexpectedly,
such as an aircraft flying by or a PDA passing by with bluetooth connec-
tion enabled. There is no pre-determined schedule for these contacts.

intermittent - predicted – based on on fixed schedule, but likely contact
times can be predicted from history of contacts or other information.

5.6.6 Fragmentation

The DTN framework provides fragmentation and reassembly mechanisms to
improve efficiency of bundle transfers by fully utilizing contact bandwidth and
period and avoiding retransmission of partially transferred bundles. There are
two forms of fragmentation, proactive and reactive. In proactive fragmentation
a DTN node may divide an ADU into multiple bundles and transmit them
independently. The final destination is then responsible for reassembling the
complete ADU from the smaller bundles. This approach is used primarily when
contacts are known in advance or can be predicted. With reactive fragmentation
nodes may fragment a bundle cooperative when only part of it is transferred.
The receiving node then modifies the bundle to indicate that it is a fragment and
forwards it further as usual. The other node may learn that only a part of the
bundle was transferred to the next hop and transmit the remaining portion of
the bundle during subsequent contact opportunities. This may well happen via
different next-hop nodes if routing changes. The reactive fragmentation is not
required for every DTN implementation, but fragment reassembly is. Reactive
fragmentation may pose significant challenges in case of digital signatures and
authentication codes. In case DTN security is enabled, proactive fragmentation
may have to be used.

Although of importance, the issues of congestion and flow control have not
yet been resolved withing the DTNRG research group.

5.6.7 Time synchronization

The DTN architecture depends on time synchronization between DTN nodes
primary for the following reasons:

• bundle expiration time computations – Each bundle contains a creation
timestamp and an explicit expiration field (number of seconds after cre-
ation) on each bundle. These are used to determine how long a bundle is
valid and when it can be discarded.
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• bundle and fragment identification – The concatenation of the creation
timestamp and the source EID serves as a unique identifier for an ADU.
Such identified is used by custody transfers and bundle fragments reassem-
bly.

• routing with scheduled or predicted contacts

• application registration expiration – Application registrations for for re-
ceiving traffic for an EID are maintained only for a finite time, specified
during the registration.

5.6.8 Security

The possibility of severe resource scarcity in some DTN networks requires some
form of authentication and network access control. For example, it should not be
possible for an unauthorized user to flood the network, possibly denying service
to legitimate users. Furthermore, unauthorized traffic should not be forwarded
at all over some special, mission-critical links. For this purpose the DTN frame-
work standardizes a security architecture . It utilizes both end-to-end and hop-
by-hop authentication and integrity mechanisms. Using both approaches allows
to handle access control for data forwarding separately from application-layer
data integrity. While the end-to-end mechanisms may be used to authenticate
principals such as users, the hop-by-hop mechanisms authenticate DTN nodes as
legitimate bundle transceivers to each other. If authentication or access control
checks fail, traffic is discarded as early as possible by the DTN nodes. The pur-
pose for standardizing a DTN security architecture is that standard approaches
have shortcomings due to the delays and disconnections in a DTN environment,
making updating access control lists, revoking credentials or frequent accesses
to an authentication server unattractive. Note that the security architecture is
optional for DTN.

5.6.9 State maintenance

Various types of state have to be managed by the bundle layer.
Application registration state is created by applications and removed by an

explicit request or timeout. The state should be retained across application and
system restarts. Due to the possibly high round-trip time, an application might
have to be restarted when a response comes back. State information has to be
maintained to enable a correct reinstantiation of the respective application.

A custodian has to keep account of bundles for which is has accepted cus-
tody. Additionally, protocol state related to transferring custody has to be
maintained. Custody state information related to a bundle can be released
when a Custody Transfer Succeeded signal is received, indicating that custody
has been transferred to another node.

Information related to routing and forwarding has to be maintained. Bundles
to be forwarded may stay in queues for considerable amounts of time while
waiting for a communication opportunity. While unicast and anycast bundles
may be discarded after a successful transfer to the next hop, multicast bundles
constitute an additional burden as the have to be archived longer in case a
registration for the multicast group arrived later.
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In case the DTN security approach is enabled, additional state information
needs to be maintained. This includes node’s own private information, cre-
dentials and revocation lists, access control lists including updates and cached
possibly public information and credentials of their next-hop neighbors.

Finally, each node has to maintain its own configuration and policy state.
As bundle delivery has to operate over networks with significant delays,

applications using the DTN networks should be designed in a delay-tolerant
fashion as well. Communication primitives provided by the DTN architecture
are based on an asynchronous, message-based communication rather than a
request-response model. ADUs created by an application should be sufficiently
self-contained to be treated independently by the receiver rather than rely on
information in other ADUs.

Due to the possibly long delays between sending a message and obtaining
a response, an application may terminate before the response arrives. The
application should be designed in a way allowing for easy reinstantiation using
save state information from persistent storage.

5.6.10 Convergence layer

As the DTN architecture uses for the underlying communication various differ-
ent protocols offering varying functionality, additional per-protocol adaptation
may be accomplished by a convergence layer between the bundle layer and the
underlying protocol layer. The complexity of these convergence layers may dif-
fer across protocols, but would provide a consistent interface for the bundle
layer. For example, for some protocols, the convergence layer would have to
implement an acknowledgment scheme while other protocols, such as TCP/IP
might already include it. The convergence layer for TCP/IP is defined in [15].

5.6.11 LTP

Another underlying protocol that can be used is the Licklider Protocol (LTP),
which will be described in more detail. An overview of LTP can be found in
[7]. LTP is intended as a reliable convergence layer over single-hop deep-space
RF links, i.e. links with extremely long round trip times and/or frequent inter-
ruptions in connectivity, but can be applied in other environments as well. The
basis of LTP design comes from the Consultative Committee for Space Data
Systems (CCSD) File Delivery Protocol (CFDP). CFDP provides reliable file
transfer across interplanetary distances by detecting loss and automatically re-
transmitting. CFDP itself, however, has only rudimentary built-in networking
capabilities. LTP’s design notions are directly descended from CFDP’s retrans-
mission procedures.

LTP is basically a point-to-point protocol between two antennae. Hence, it
is assumed that the operating environment is able to pass information on the
link status, the so called “link state cues” to LTP. This assumption is motivated
by the interplanetary communication, where effort is spent on having the right
antenna orientation and transmission power. Hence, LTP is informed when
data should be transmitted and received. This allows for deferring transmission
if there is no link. Furthermore, timers can be suspended during interrupted
connectivity. The round trip times are assumed to be deterministic and are es-
timated from the distance between the two communication endpoints assuming
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signals not moving faster than at the speed of light.
Although LTP is a stateful protocol, it does not use any negotiation or

handshakes before exchanging data. Typically long round-trip times result in
having a rather large number of transmissions concurrently in flight. As the loss
of transmission state due to rebooting or power cycling an LTP engine would
result in rather costly retransmissions, transmission information is retained in
non-volatile memory.

A single LTP association between two nodes can accommodate several con-
current sessions, one for each block of data in transit. As there are no multiple
paths, it is assumed that packets cannot be reordered on the link. However, loss
or corruption of packets can occur.

LTP provides partial reliability for data transmission. The application can
mark which data is “red” and which is “green”. Delivery of “red” data is then
guaranteed by using acknowledgments while for the “green” data best effort
delivery is used. The motivation is that some data is worthless without the
corresponding header, but missing only part of the data is still OK. Technically,
each block of data contains a “red” and “green” part, where each can of zero
length.

LTP sports laconic acknowledgments, where acknowledgments are aggre-
gated into reception reports. These reports are sent only upon encountering
specific solicitations for reception reports, so called “checkpoints”. The recep-
tion reports are mandatory at the end of “red” data and at the end of trans-
mission. The operation of LTP is then to send segments, receive a report and
acknowledge the reception of the report. Using the selective acknowledgments,
LTP provides reliable communication.
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Chapter 6

Conclusions

A 6lowpan implementation for TinyOS 2.0 has been written, allowing to connect
wireless sensor networks to the Internet. The implementation includes support
for the ICMP echo mechanism and the UDP protocol. All 6lowpan-defined
optional headers are processed. 6lowpan fragmentation and fragment reassem-
bly have been implemented. The 6lowpan-specified HC1 compression of the
IPv6 header and the HC UDP compression of the UDP header are supported
as well as handling of the uncompressed headers. The compression scheme
lack support for non-zero IPv6 flow label and traffic class and does not handle
compressed UDP port numbers. Neighbor discovery is not implemented and
link-layer broadcast addresses are used instead. The implementation works on
the TelosB and MicaZ hardware platforms.

In addition, a 6lowpan-translating daemon has been written in C allowing a
Linux PC to use a USB-connected mote as an 802.15.4 interface.

The implementation has been tested with the Linux ping6 and nc6 utilities,
where a Linux PC was using the translating daemon and a USB-attached TelosB
mote as an 802.15.4 interface. The implemented 6lowpan/IPv6 stack was found
to correctly reply to ICMPv6 echo replies as well as to correctly handle the
exchange of UDP datagrams. Fragmentation from the mote to the PC was
found to work flawlessly, while fragment reassembly on the mote is not yet
reliable.

As TinyOS 2.0 does not include a proper 802.15.4 stack, the 6lowpan payload
is transported in Active Messages. These have an 802.15.4-compatible header,
but include an additional one byte field at the beginning of the 802.15.4 payload.

Possible further work would be to add more features to the implementation.
Fragment reassembly should be further debugged. Neighbor discovery could
be implemented so that packets would not be broadcasted on the link-layer.
A proper 802.15.4 stack for TinyOS 2.0 would allow interoperability testing
with other 6lowpan implementations, assuming these would be using a proper
802.15.4 stack as well. Various mesh routing algorithms could be investigated
and the 6lowpan Mesh Addressing Header could be used for mesh networking.
The Simple Network Management Protocol could be implemented for the mote,
using the 6lowpan stack. This protocol would be suitable for collecting sen-
sor values. The 802.15.4 interface could also be used for localization, which
would be useful in robotics scenarios. The IPv6 protocol could then be used for
exchanging measurements and distributed map calculations.
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