Connecting Wireless Sensor Networks to the
Internet

MSc. Thesis Proposal

Matus Harvan
m.harvan@iju-bremen.de

Fall Semester 2006

Supervisor: Jiirgen Schonwélder

International University Bremen '

Campus Ring 1
28759 Bremen
Germany

1 The Unseen University as of Spring 2007

mailto:m.harvan@iu-bremen.de

Abstract

The focus of the proposed work is to investigate mesh networking over 802.15.4
links in wireless sensor networks with the MicaZ and TelosB motes running
the TinyOS operating system. Background information on several related areas
is presented, such as the TinyOS operating system and motes, the RoboCube
platform and CubeOS operating system, the 802.15.4 and 802.15.5 standards,
the uIP TCP/IP stack implementation, the 6lowpan approach for transmitting
IPv6 traffic over 802.15.4 links and the Delay-Tolerant Networking.

Contents

1 Introduction
2 Hardware Platforms and Operating Systems
2.1 TinyOS . . . o o
2.2 RoboCube and CubeOS
2.3 Unix-like systems oo oo
3 PHY and MAC Layers
3.1 802.15.4
3.1.1 Network topologies
3.1.2 Data transfers in beacon-enabled and non-beacon networks
3.1.3 Robustness o
3.1.4 Security
3.1.5 Implications for higher layers
3.1.6 802.15.4a Task Group
3.1.7 802.15.4b Task Group
3.1.8 ZigBee Alliance L.
3.2 802155
4 Above the Link-Layer
4.1 Proxyo e
4.1.1 Sensor Internet Protocol
4.1.2 Serial Forwarder
4.2 ulP ..o
4.2.1 TCP/IP Optimizations for Wireless Sensor Networks . . .
4.3 6lowpan e
4.3.1 Addressing Modes
4.3.2 Adaptation Layer 0.
4.3.3 Header Compression
4.3.4 Provisions for Meshes 0oL
5 DTN
5.0.5 Endpoint Identifiers (EID).
5.0.6 Priority Classes
5.0.7 Delivery Options
5.0.8 Custody Transfers
5.0.9 Contact Types o
5.0.10 Fragmentation

5.0.11 Time Synchronization 25

5.0.12 Security 25

5.0.13 State Maintenance 26

5.0.14 Convergence Layer 27

51 LTP e 27

6 Proposed work 29

Bibliography 29

Chapter 1

Introduction

Wireless sensor networks consist of numerous tiny nodes equipped with various
sensors and a radio interface for communication. Among the applications are
environment monitoring such as forest fire detection and water or air quality
monitoring, wildlife monitoring, smart spaces, medical systems and robotic ex-
ploration. Due to the nature of the application, access to the motes may not be
feasible after initial deployment. Hence, the devices have to run for extended
periods of time on battery power, resulting in low-power, energy-saving designs.

The purpose of the proposed work will be to investigate ways of connecting
such wireless sensor networks to the Internet, i.e. enabling TCP /IP support, and
focus on wireless mesh networking mechanisms over 802.15.4 links in wireless
sensor networks composed of TinyOS-enabled motes.

As preparation for this work, several related areas have been studied in more
depth and the collected background information fills the majority of this docu-
ment. Chapter 2 gives an overview of several hardware platforms and operating
systems suitable for wireless sensor network scenarios. Chapter 3 describes the
underlying link layers (PHY and MAC) facilitating the communication in a
wireless sensor network, focusing on 802.15.4 and the 802.15.5 mesh extensions.
Chapter 4 describes several approaches to support the higher level network lay-
ers and protocols, such as IP, TCP, UDP and ICMP, in wireless sensor networks.
Various modifications to make TCP/IP more viable for wireless sensor networks
are also covered. The Delay Tolerant Networking approach, covered in Chap-
ter 5 may also be applicable to wireless sensor networks. Chapter 6 lays out
details of the proposed work to be done within the scope of a Master Thesis.

Chapter 2

Hardware Platforms and
Operating Systems

Several embedded hardware platforms and corresponding operating systems
suitable for wireless sensor network scenarios will be described. They can
roughly be divided into tiny motes running the TinyOS system, RoboCube-
based platforms running the CubeOS system and embedded devices running a
UNIX-like system, such as Linux.

2.1 TinyOS

The most typical hardware platform used for wireless sensor networks are tiny,
low-power motes. These are embedded systems with an 8-bit micro-controller,
RAM and flash memory sizes in the order of kilobytes and physical sizes in the
order of a few em?. The motes are also equipped with an RF interface. Spend-
ing most of the time in sleep modes, they can run for several years on 2 AAA
batteries. Probably the most widely known are the motes originally developed
at UC Berkeley and produced by the Crossbow Technologies company. For ex-
ample, CrossBow’s Mica2 motes use an Atmel ATmegal28L micro-controller,
have 4 KB of RAM and 128 KB of flash memory [9] and an RF interface op-
erating 433 and 868-915 MHz frequencies. The MicaZ motes have an 802.15.4
compliant interface. Clearly, these motes are suitable for low data rate appli-
cations requiring only minimum data processing. However, target costs of less
than 10 cents per mote would enable networks with potentially thousands of
devices.

These motes typically run the TinyOS operating system [15]. It originated
at UC Berkeley and was designed for extremely restricted devices such as the
motes. It is an event-driven operating system supporting concurrency with
low overhead. There are no blocking operations. All long-latency operations
are split-phase, i.e. commands requesting an operation return immediately and
completion of the operation is signaled with an event. The system provides a set
of reusable components, which are combined together using the so-called wiring
specification. The OS has a very small footprint, with the core OS requiring
only 400 bytes of code and data memory.

The TinyOS operating system is written in the nesC language [15]. nesC is

a dialect of the C language. It is “static” language with no dynamic memory
allocation and no dynamic dispatch. This allows for whole program analysis at
compile time, resulting in efficient optimizations. Furthermore, safety checks,
such as data-race detection are also performed at compile time.

2.2 RoboCube and CubeOS

RoboCube [2] is an embedded hardware platform used mainly in robotics. It
is based on the Motorola MC68332 processor and has 1 MB of RAM and 1
MB of flash-EPROM. The hardware design involves various boards, such as
processor-, bus- and I/O-boards, which can be stacked on top of each other
to form an embedded system. A board’s size is 77x86 mm. The bus-board
provides SPI and I2C controllers, allowing to attach various sensors. In a typical
robotics scenario, energy for electric motors of the robot based on a RoboCube
system is also supplied from the battery, resulting in lower battery life time. For
example, battery life time of the RoboCube systems used in the Robotics Lab
at International University Bremen is in the order of hours rather than years.

CubeOS [2] is an operating system for the RoboCube platform. It is a small,
embedded, real-time operating system providing preemptive and cooperative
multi-threading; thread create, suspend, resume, sleep and kill functions; IPC
with signals, semaphores and message queues; data primitives such as lists and
buffers; control primitives such as reactive and PID control; sensor and actuator
abstraction; layered radio communication protocol; real-time clock; and various
device drivers. CubeOS consists of about 30 KB of binary code and the modular
design allows to compile together only the necessary components for a specific
RoboCube hardware configuration.

The robotics framework is further aided by the RobLib library building on
top of the CubeOS system. It provides medium to high level functions for motor
control and supports dead-reckoning and motion control.

Although the RoboCube platform with CubeOS system is used mainly in
robotics, it could be equipped with various sensors and used also in wireless
sensor network scenarios.

2.3 Unix-like systems

Several UNIX-like operating systems such as Linux or NetBSD are available
also for various embedded platforms. Using these operating systems may be an
appealing alternative to a custom operating system given the plethora of readily
available applications.

For example the SeNDT project [29] at Trinity College Dublin uses an Intel
XScale-based platform with 64 MB RAM and 64 MB flash memory running
ARM Linux in a wireless sensor network application for monitoring lake water
quality. The battery life of these devices reaches half a year.

It should be noted that a port of the Linux operating system, named uCLinux,
exists also for several architectures without a memory mapping unit. Hence, the
Motorola MC68332-based RoboCube platform could also use the Linux operat-
ing system rather than CubeOS.

Chapter 3

PHY and MAC Layers

Wireless sensor network devices usually have a built-in radio interface and com-
municate using the wireless channel. There are several possibilities for the un-
derlying wireless communication technology.

The early motes were not using any standardized PHY and MAC layer pro-
tocols. The radio interface used two-tone Frequency-Shift-Keyed (FSK) modu-
lation at 433 and 868-915 MHz supporting data rates up to 38.4 kbps. In the
case of TinyOS, the operating system provides an addressing scheme and takes
care of physically transmitting messages over the medium without any standard-
ization of the PHY or MAC layer protocols. Interoperability basically requires
using the same operating system and cross-vendor hardware compatibility is
unclear.

The IEEE 802.11 family provides several standardized protocols (802.11a,
802.11b, 802.11g) for wireless communication and compatible devices are widely
used. However, these protocols provide unnecessarily high range and data rates
for wireless sensor network scenarios, resulting in high energy demands for wire-
less communication. Therefore, they are not well suited for the tiny motes with
limited resources and battery power.

3.1 802.15.4

A standardized alternative targeted at limited devices such as the tiny motes is
the 802.15.4 standard [19]. It was developed by the 802.15.4 Task Group within
the ITEEE and defines the physical layer (PHY) and medium access control
(MAC) layer specifications for low data rate wireless personal area networks
(LR_-WPANS). Such networks are typically limited to a personal operating space
(POS) of up to 10 meters and involve little or no infrastructure. The standard
provides for low complexity, low power consumption, low data rate wireless
connectivity among a wide range of inexpensive devices. Among others, wireless
sensor networks seem to be a suitable application scenario for 802.15.4 networks.

3.1.1 Network topologies

An 802.15.4 network consists of two types of devices, full-function devices (FFD)
and reduced-function devices (RFD). An FFD can operate as a personal area

network (PAN) coordinator, a coordinator or a device while an RFD can only
act as a device. An FFD can talk to RFDs and other FFDs, while an RFD
can only talk to FFDs. An RFD is intended for very simple applications, such
as a light switch or a passive sensor, with no need to send large amounts of
data. An RFD may associate with only one FFD at a time. As a result of these
restrictions, an RFD needs only minimal resources and memory capacity.

An 802.15.4 network is constituted of at least two devices within a POS
communicating on the same physical channel. It shall contain at least one FFD
acting as the PAN coordinator. The network may operate in a star or a peer-
to-peer topology.

In the star topology devices communicate with a single central PAN coordi-
nator. While RFDs act as communication end-points only, a PAN coordinator
mainly routes communication around the network. Different star networks op-
erate independently of each other. This is achieved by using a PAN identifier
which is unique within the radio range. After the PAN coordinator has chosen
a PAN identifier, it can allow other devices, both FFDs and RFDs, to join the
network.

The peer-to-peer topology also has a PAN coordinator, but additionally
devices can communicate directly with each other. This allows for more complex
topologies, such as a mesh topology or a cluster-tree.

The cluster-tree network is a special case of a peer-to-peer network with
mostly FFD devices. As a RFD can associate to only one FFD, RFDs can
participate in cluster-tree networks only as leave nodes. Any of the FFDs can
act as coordinators and provide synchronization services to other devices and
coordinators. One of these coordinators becomes the overall PAN coordinator.
The PAN coordinator forms the first cluster by picking an unused PAN identi-
fier, becoming the cluster head (CLH) with cluster identifier (CID) of zero and
broadcasting beacon frames. Devices receiving these beacon frames may re-
quest joining the cluster at the CLH. If the PAN coordinator grants the joining,
the new device will be added to the PAN coordinator’s neighbor list and start
broadcasting beacons as well. Other devices may then join the network at this
new device as well. If it is not possible to join the network at the CLH, a device
searches for another parent device. The PAN coordinator may instruct another
device to become the CLH of a new adjacent cluster. This could happen if pre-
determined application or network requirements are fulfilled. As other devices
connect, a multicluster network structure is formed. In its simplest form, the
cluster tree network consist of only a single cluster, but larger networks may
be formed as a mesh of multiple neighboring clusters. This is illustrated in
Figure 3.1. The multicluster structure trades increased message latency for an
increase in coverage area. Such a peer-to-peer network can clearly be ad-hoc,
self-organizing and self-healing.

The 802.15.4 standard provisions for two types of addresses. All devices
shall have unique 64-bit extended IEEE addresses. These extended address can
be used for direct communication within the PAN. Additionally, devices can
be allocated 16-bit short addresses by the PAN coordinator during association
with the PAN coordinator.

3 frequency bands using different data rates are available for 802.15.4. They
are summarized in Table 3.1.

tPAN Goardinatar
cCluster Head (CLH |

: Davice

Figure 3.1: Cluster Tree Network — lines represent parent-child relationships
rather than communication flow. Image taken from [19].

frequency ‘ data rate
2400 — 2483.5 MHz | 250 kbps
902 — 928 MHz 40 kbps

868 — 868.6 MHz 20 kbps

Table 3.1: 802.15.4 frequency bands

3.1.2 Data transfers in beacon-enabled and non-beacon
networks

There are two modes of operation of an 802.15.4 network, a beacon-enabled and
a non-beacon mode.

In the beacon-enabled mode, an optional superframe structure is used. It
is defined and bounded by the beacons broadcasted by the coordinator. The
beacons are used to synchronize devices, identify the PAN and describe the su-
perframe structure. The superframe is divided into 16 equally sized slots. A
beacon is broadcasted in the first slot of each superframe. An illustration is
available in Figure 3.2. Devices wishing to communicate during the contention
access period (CAP) between two beacons compete with other devices using s
slotted CSMA-CA (Carrier Sense Multiple Access - Collision Avoidance) mech-
anism. The superframe may be divided into an active and an inactive portion.
During the inactive portion the coordinator does not interact with the PAN
and may enter a low-power mode. The coordinator may dedicate portions of
the active superframe to guaranteed time slots (GTSs) for low-latency appli-
cations or bandwidth guarantees. The GTSs form the contention-free period
(CFP) and appear at the end of a superframe. There may be at most 7 GTSs
per superframe and a GTS may occupy more than one time slot.

Frame Beacons

/ \

Canténtipn Conftention
ccpsg Pariod fire¢ Period

time

Figure 3.2: Superframe structure. The Contention Free Period is optional.
Image taken from [19].

There is a difference between data transfers from a device to a coordinator
and vice-versa. For data transfers from a device to a coordinator, the device
uses slotted CSMA-CS to transmit its data frame. For data transfers from
a coordinator to a device, the coordinator indicates in the beacon that data is
pending for the device. The device periodically listens for the beacon broadcasts.
If a data transfer is pending for it, it transmits a MAC command requesting
the data transfer. This MAC command is transmitted using slotted CSMA-CA.
Upon reception of the MAC command, the coordinator uses slotted CSMA-CA
to transmit the data frame to the device.

The coordinator may decide that non-beacon mode is used. Then there is
no superframe structure and devices use unslotted CSMA-CA instead of slotted
CSMA-CA. Note that beacons are still needed for network association. For
data transfer from a coordinator to a device, the device has to request the data
transfer using a MAC command. If there is data pending for the device, it is
transmitted in a data frame. Otherwise, a data frame with zero-length payload
is transmitted, indicating no pending data for the device.

For peer-to-peer data transfers the devices either receive constantly or syn-
chronize with each other. In the former case unslotted CSMA-CA is used while
the latter case is beyond the scope of the 802.15.4 standard.

The 802.15.4 protocol has been designed to favor battery-powered devices.
These can spend most of their time in a sleep state saving battery power. How-
ever, they have to periodically wake up and check if there are any messages
pending by listening to beacons. This allows the application designer to bal-
ance between battery consumption and message latency.

3.1.3 Robustness

Robustness in the 802.15.4 networks is achieved by using optional frame ac-
knowledgments, CSMA-CA mechanisms and data verification.

The 802.15.4 standard accommodates optional frame acknowledgments for
MAC command frames and data frames. Note that in both non-beacon and
beacon-enabled networks, these acknowledgments are sent directly without us-
ing CSMA-CA.

The non-beacon networks use an unslotted CSMA-CA channel access mech-
anism. When a device wishes to transmit a frame, it has to wait for a random
period of time. If the channel is idle after this random period of time, data shall
be transmitted. In case the channel is busy, the device shall wait for another
random period of time before retrying.

Beacon-enabled networks use a slotted CSMA-CA channel access mecha-
nism. The backoff slots are aligned with the start of the beacon transmission.

A device wishing to transmit during the CAP period waits for a random number
of backoff slots. If the channel is idle afterwards, it can transmit. Otherwise, it
waits for another random number of backoff slots before retrying.

For the data verification part, a 16-bit cyclic redundancy check (CRC) is
used on every frame to detect bit errors.

3.1.4 Security

Several security services such as maintaining an access control list (ACL) and
using symmetric-key cryptography to protect transmitted frames are specified
by the standard.

Using these services, devices may operate in one of the three security modes:
unsecured, ACL and secured mode. In the unsecured mode, no security services
are used. Devices operating in the ACL mode maintain ACL lists of devices
from which they are willing to receive frames. Devices operating in the secured
mode use cryptography services in addition to ACLs. The cryptography services
include data encryption for beacon, command and data payloads, usage of a
message integrity code to provide frame integrity, i.e. to protect data from being
modified by parties not sharing the encryption key, and sequential freshness
using an ordered sequence of inputs to reject replayed frames. The freshness
checking works by comparing the freshness value of a received frame with the last
known freshness value. If it is newer, the check has passed and the last known
freshness value is updated. The distribution of the symmetric encryption keys
is not specified by the 802.15.4 standard.

3.1.5 Implications for higher layers

From the viewpoint of higher network layers, an important aspect of 802.15.4
is its limitation on the frame size. The PHY header uses a 7 bit field to specify
payload length in bytes (0-127 bytes). Taking into account the PHY and MAC
layer headers, this leaves a Maximum Data Length of 102 bytes for the higher
layers. Further interesting implications IP traffic are mentioned in [30]:

1. Links are predominantly bimodal for short packet bursts.

2. Sporadic traffic observes intermediate links, which are due to SNR varia-
tions.

3. There are ETX asymmetries, which are larger over longer time intervals.

4. Acknowledgement failures are correlated.

The 802.15.4 protocol is defined in the 802.15.4-2003 standard. This docu-
ment was approved in May 2003 and published in October 2003. With releasing
of the standard, the work of the 802.15.4 task group has been completed, the
group was hibernated and two new task groups, 802.15.4a and 802.15.4b, have
been formed.

3.1.6 802.15.4a Task Group

The 802.15.4a Task Group is developing an amendment to the current 802.15.4-
2003 standard for an alternate PHY to provide high precision ranging and lo-
cation capability with 1 meter accuracy and better, high aggregate throughput,

ultra low power, higher data rates, longer range, lower power consumption and
lower cost. The baseline specification has been selected in March 2005 to in-
clude two optional PHYs consisting of a UWB Impulse Radio operating in the
unlicensed UWB spectrum and a Chirp Spread Spectrum operating in the un-
licensed 2.4GHz spectrum. The UWB Impulse Radio should be able to deliver
high precision ranging. The final standard is expected to be published by IEEE
in March 2007.

3.1.7 802.15.4b Task Group

The 802.15.4b Task Group is refining the current 802.15.4-2003 specification to
clear up ambiguities and resolve inconsistencies. Furthermore, the group is sup-
posed to make specific extensions such as a faster sub-GHz physical interface,
add support for time synchronization, reduce unnecessary complexity, increase
flexibility in security key usage and consider newly available frequency alloca-
tions. The IEEE 802.15.4b standard has been approved in June 2006 and is
waiting for publication.

3.1.8 ZigBee Alliance

While the IEEE 802.15.4 standard provides the lower network layers, the ZigBee
alliance [32] is supposed to provide the upper layers ranging from the network
layer to the application layer, including application profiles. The alliance pro-
vides interoperability compliance testing and marketing of the standard. It in-
tends to ensure cross-vendor compatibility, i.e. it should guarantee that a light
switch from one company works with the lights from another company. The
ZigBee standard has been publicly released in June 2005. In December 2005
there have been 6 compliant platforms.

3.2 802.15.5

Mesh networking is a mechanism providing multi-hop routing within the link
layer. Within a wireless network, where not all nodes necessarily have connec-
tivity to the next-hop router, IP routing would not be suitable. However, using
multi-hop paths over intermediate nodes, the range of wireless networks can be
further increased without modifications to the IP layer. A plethora of mesh net-
working protocols has been developed for mobile ad-hoc networks (MANETS)
and a description of the more than 70 different protocols is beyond then scope
of this document. However, the IEEE is developing the 802.15.5 standard for
mesh networking in 802.15 WPANSs, which will be described in more detail.

The IEEE 802.15.5 working group is chartered with providing Mesh Net-
working support for 802.15 WPANs. By combining Samsung and Philip’s pro-
posal, a draft for the baseline document has been created. While not all details
have been resolved yet, the document provides some insights how Mesh Net-
working will be enabled for both the high data rate 802.15.3 and the low data
rate 802.15.4 WPANs. For wireless sensor networks and the proposed work,
the extensions for 802.15.4 may be relevant and hence will be described more
closely.

Mesh networking for 802.15.4 is enabled by using the adaptive robust tree
(ART) and the meshed ART (MART) mechanisms. In an ART, nodes are
organized into a tree form. KEach branch of the tree is assigned a block of
consecutive addresses. Nodes keep information about nodes in their branches
and use this information for routing decisions. The ART has three phases,
initialization, normal and recovery phase.

During the initialization phase, nodes join the network and a tree is formed.
This phase is functionally divided into two stages, association and address as-
signment. During the association stage nodes gradually join the network and
a tree is formed. To allow nodes to limit the number of children it is willing
to accept and to balance the number of children among nodes, an acceptance
degree (AD) is used in response to an association requests. The AD has one of
the four values: 3 — accept without reservation, 2 — accept with reservation, 1
— accept with reluctance and 0 — reject. An associating node should choose the
node with the highest AD response.

After a branch reaches its bottom (a suitable timer can be used for this
purpose), the number of nodes in that branch is counted in a down-to-top way.
Whenever a node joins the network, it starts a timer. If no other node joins
before the time expires, the node becomes a leaf node and sends a children
number report frame to its parent. After a non-leaf node has received the
report from all its children, it reports to its parent by summing up all children
requests and its own requests. The node and requested addresses counting
is illustrated in Figure 3.3. Within the report frame nodes also indicate the
number of requested address. The possibility of allocating more addresses than
nodes allows for a small number of nodes joining the network later.

-
L]

HO!

- »ta ”
F *0 MY N
!‘.‘,[] !"', [0] !‘-

Figure 3.3: Calculating the number of nodes along each branch in an ART
structure. The numbers indicate number of children within each branch. Image
taken from [21].

10

After the root node receives information from all its branches, the address
assignment stage starts. The root node assigns consecutive blocks of addresses to
the branches and the addresses are distributed to the nodes in a top-to-bottom
manner. After the address assignment is finished, a logical tree is formed and
each node has a block addressing table (BAT) for tracking the branches below
it.

After the initialization phase, the normal phase is entered. In this phase
normal communication can start. The BAT table is used for routing decisions,
i.e. to determine the next hop from a packet’s destination address. If the des-
tination address is not in one of the branches, the frame is forwarded to the
parent. Small numbers of nodes can still join the network during the normal
phase. For larger changes in the number of nodes or the tree topology, the tree
has to be initialized again. Link and node failures can trigger the recovery phase
for affected parts of the tree, with the rest of the tree continuing in the normal
phase.

The ART structure can be extended to a Meshed ART by allowing con-
nections between neighbors as illustrated in Figure 3.4. For this, the nodes
broadcast hello messages to learn their neighbors and construct a connectivity
matrix. Compared to an ART, the MART allows shorter routes and eliminates
some single points of failure.

hY
// h
/f \\ / \\
/ \ ;/ N / \
/ I A | \\ ; \
F-O-F- OO
£

Noof \
hof ool

Figure 3.4: Meshed ART - the black lines represent links in an ART while the
magenta lines represent the additional connections in a MART. Image taken

from [20].

The [21] document details out the mechanisms, frame formats as well as an
extension for multicast mesh routing.

11

Chapter 4

Above the Link-Layer

Many wireless sensor networks cannot be operated in isolation. They need to
be accessible from external networks for monitoring and controlling. The ubig-
uity of TCP/IP has made it the de-facto standard protocol suite for computer
networks. TCP/IP support in sensor networks would allow benefiting from the
ease of interoperability and generality of an estabilished technology, a plethora
of readily available applications and make it possible to connect wireless sen-
sor networks directly to other networks and the global Internet. By TCP/IP
support, UDP and ICMP protocol support is meant as well. While the UDP
protocol is suitable for transferring sensor data, the TCP protocol is useful for
configuration, management, re-programming and system updates of the sensor
nodes. Several ways to enable IP connectivity and support for the TCP, UDP
and ICMP protocols support in wireless sensor networks are possible. A proxy-
based approach scheme and two approaches for native TCP/IP support on the
sensor nodes, ulP and 6lowpan, will be described.

4.1 Proxy

In the simplest scenario a proxy-based scheme is used. A special proxy server is
employed as a gateway between the sensor network and the TCP/IP network.
As all communication between clients from the TCP/IP network and sensor net-
work goes via the proxy, the two networks are separated and the communication
protocol within the sensor network can be freely chosen.

The proxy can operate as a front-end or as a relay. In the former case, the
proxy acts as a front-end for the sensor network, pro-actively collects data from
the sensor nodes and stores the data in a database. Clients from other networks
then query the proxy for sensor data. In the latter case, the proxy relays data
between sensor nodes and TCP /TP hosts, possibly translating TCP/IP packets
to a custom protocol used within the sensor network. One such approach, the
Sensor Internet Protocol will be described in more detail.

It should be noted that a proxy can also be useful when sensor nodes natively
support TCP/IP. Here, the proxy can offload the sensor nodes from resource-
intensive tasks such as fragment reassembly. One such approach is described in
[13].

12

4.1.1 Sensor Internet Protocol

The Sensor Internet Protocol (SIP) [24] is a proxy-based scheme for connecting
wireless sensor networks with TCP /TP networks. The sensor nodes do not have
any IP support. Instead, TinyOS Active Messages [16] are used within the
wireless sensor network. An intermediate agent, a proxy, is acting as a gateway
between external TCP/IP hosts and the Active Messages-based wireless sensor
network. This proxy is assumed to be a more powerful device, which is not
subject to severe computational and memory constraints such as the sensor
nodes. The main motivation is to shift the burden of TCP /IP processing away
from the motes onto the proxy.

As the motes do not have any notion of the TCP/IP protocol suite, the
proxy translates between TCP/IP packets and Active Messages. In order to
map IP addresses to actual node IDs, the proxy maintains a table with the
corresponding mappings between IP addresses and node IDs. As IP fragment
reassembly may consume a lot of resources, it is performed on the proxy. The
Active messages used in TinyOS are limited to several tens of bytes, so the
TCP/IP payload maybe be too large to fit into a single Active Message. This is
left as an open problem in [24]. In general, IP options are dropped. The proxy
handles also the ICMP, UDP and TCP protocols.

From the ICMP protocol, only echo, i.e. reply to ping is implemented. The
reply is generated at the proxy rather being routed via the sensor network.
Features such as Path MTU discovery or redirect are not supported.

As UDP is a connection-less datagram-oriented protocol, the translation is
rather simple. However, for TCP the state of each connection has to be kept
in the proxy. Furthermore, several optimization are done for the TCP protocol.
The proxy acknowledges data on behalf of the motes. As the acknowledgement
is sent prior to delivering data to the actual sensor, undelivered data may be
acknowledged. While reducing round-trip times, this may be a problem with
TCP/IP standards compliance as data that would never be delivered to the
end host becomes acknowledged. The proxy also buffers and reorders TCP
segments to the correct sequence. Restricted buffer space on the motes is taken
into account and data may be queued on the proxy. Should transmission of
data to the sensors be deferred, appropriate TCP congestion mechanisms and
Explicit Congestion Notification are used. Finally, the burden of maintaining
the TCP connection state is taken over by the proxy. It handles the opening
and closing of TCP connections as well as TCP retransmissions. As with IP
options, TCP options are also removed. It is assumed that the sensor nodes do
not actively open connections and only accept incoming connections.

While not implementing the full TCP/IP functionality and ignoring TCP
and IP options, the described scheme allows for basic TCP/IP communication
between wireless sensors and external TCP/IP hosts. The communication is
possible without modifying the wireless sensors or the external TCP/IP hosts.
By moving most of the resources demanding tasks away from the tiny motes to
the proxy, little resources are wasted on the sensor nodes.

4.1.2 Serial Forwarder

It should be noted that an even simpler proxy approach exists, but requires
external hosts to be aware of the special communication protocol used within

13

the sensor network. All TinyOS Active Messages from external hosts are en-
capsulated into TCP/IP packets and forwarded by a gateway into the sensor
network. An implementation is included with TinyOS under the name serial
forwarder. The serial forwarder listens on a single IP address and TCP port.
Active Messages are encapsulated as the TCP payload and forwarded by the
proxy between the sensor network and the external IP network. As in the case
of the previously described SIP, the sensors are not TCP/IP-aware. However,
in contrast to SIP, this approach requires that applications on external hosts
are aware of the Active Message protocol details and node IDs. An extension
of the serial forwarder implementation to support IPv6 is described in [28].

4.2 ulP

ulP[11] is a TCP/IP stack implementation by Adam Dunkels. It runs on 8-bit
controllers with a few hundred bytes of RAM. Only the minimal set of features
needed for a full TCP/IP stack is implemented.

ulP deals with IPv4 only. It can only handle a single network interface. IP
fragments are reassembled only for one packet at a time and they are dropped
if not all segments are received within a specified time limit. From the ICMP
protocol only echo has been implemented. Features such as Path MTU discovery
or ICMP redirect are not supported. Opposed to the BSD socket API, the
TCP API is event driven. This fits well into the TinyOS API design. There
is no sliding window support as only one TCP segment per connection can
be unacknowdledged, i.e. in flight. However, it should be noted that sliding
window support is not required by the TCP specification. Another drawback
of allowing only one unacknowledged packet is the negative impact of delayed
acknodledgements[7]. A TCP receiver using delayed acknowledgements sends
an acknowledgement only for every other received segment or in a time frame
of at most 500ms if only one segment has been received. As ulP only sends one
segment at a time, the receiver waits for as long as 500ms before acknowledging
it. With only one TCP segment can be in-flight, congestion control mechanisms
are not needed. The sent TCP segment is not buffered by the TCP stack and
if retransmission is needed, the application is called. The UDP protocol is also
supported.

The ulP implementation complies with all the TCP/IP requirements deal-
ing with host-to-host communication as specified in RFC1122 [3], but falls short
on the requirements for communication between the networking stack and the
application. While additional care has to be taken when developing applica-
tions using ulP, no incompatibilities should arise when the ulP implementation
communicates with other TCP/IP implementations.

4.2.1 TCP/IP Optimizations for Wireless Sensor Networks

In order to make TCP/IP more viable for wireless sensor networks several opti-
mizations are suggested by the people involved with uIP in [12] and [4]. These
optimizations will be described in more detail.

In large scale sensor networks, manual configuration of IP addresses would
not be feasible and the DHCP mechanism is rather expensive in terms of required
communication overhead. However, as sensor nodes can be assumed to know

14

their location, a spatial IP address assignment scheme would be possible. For
example, the (z,y) location coordinates could be used as the two least significant
octets of an IPv4 address. Furthermore, such a spatial addressing scheme would
easily allow for regional broadcast mechanisms.

Energy savings can also be achieved by employing header compression mech-
anisms. As nodes in a sensor network usually share a common context, they
could agree on common header fields. This would allow for efficient header
compression mechanisms, reducing overhead and saving energy by having to
transmit less data using the radio interface. A UDP/IP header compressor has
been implemented reducing the UDP/IP header from 28 to 3 bytes [12].

The standard TCP/IP is known to have serious performance problems over
wireless links [1]. The throughput problem has been addressed by e.g. the Snoop
mechanism [1]. However, the low-power and energy-efficiency requirements of
sensor networks add further constraints. The end-to-end retransmission mech-
anism employed by TCP is rather energy-inefficient in lossy wireless networks.
In a multi-hop network, the retransmitted segment has to be forwarded by all
intermediate nodes between the sender and the receiver, wasting energy at every
hop. To alleviate this problem, the Distributed TCP caching (DTC) and TCP
Support for Sensor Nodes (TSS) schemes have been proposed.

DTC

To avoid energy-costly end-to-end retransmissions TCP segments are cached at
intermediate nodes between the sender and the recipient. A segment is retrans-
mitted from an intermediate node having a copy of the lost segment in case
of packet loss. Due to constrained resources of sensor nodes, each node caches
only one segment. This is the segment with the highest sequence number seen
so far with a certain probability. The probabilistic approach allows for older
segments to be cached in the network as well. Only segments presumably not
received by the next hop node are cached. Two mechanisms are available for
detecting packet loss at the next hop. Either the link layer supports positive
acknowledgements or the node overhears its successor transmitting the segment
further. If a segment is presumed to be lost in transit, it is locked in the cache
indicating that it should not be overwritten by another segment with a higher
sequence number. A locked segment is removed from the cache upon receiving
a TCP ACK acknowledging the cached segment or when the segment times out.

To avoid end-to-end retransmissions, DTC needs to respond to packet loss
faster than the standard TCP. For this purpose DTC nodes maintain a soft TCP
state for connections passing through them, measure the round-trip time (rtt)
to the receiver and use a retransmission timeout of 1.5 rtt. The timeout value
is then smaller for nodes closer to the receiver, allowing for the intermediate
nodes to retransmit before the sender would do so. A retransmission timer is
set when a segment is locked in the node’s cache.

The TCP SACK option is used for both packet loss detection and as a
signaling mechanism between DTC nodes. Upon reception of a TCP ACK with
a smaller acknowledgement number than the node’s cached segment’s sequence
number (cached), following actions are performed.

1. If cached is not in the SACK block, the cached segment is retransmitted
and cached is added to the SACK block. If this action fills all gaps in the

15

SACK block, the acknowledgement can be dropped. However, a new ACK
acknowledging all segments from the SACK block should not be generated
as the receiver is allowed to discard a previously SACKed segment.

2. If cached is in the SACK block, the node can clear its cache as either
the receiver has already received the cached segment or it is cached and
locked by another node closer to the receiver.

Note that even if the sender or receiver does not support the SACK mechanism,
the DTC nodes might add or remove the SACK option to enable SACK signaling
for DTC.

While TCP data segments are cached, TCP ACKs are not cached as they
can be easily regenerated. When an intermediate node encounters a TCP data
segment, for which is has already forwarded a TCP ACK, it assumes the TCP
ACK has been lost. Therefore, it does not forward the data segment and regen-
erates a corresponding TCP ACK.

To further aid DTC, the recipient may announce a small maximum segment
size to avoid large TCP segments exceeding the sensor nodes storage capacity
and announce a small window size to decrease the number of segments in flight.

TSS

Similarly to DTC, TSS tries to reduce the number of end-to-end retransmis-
sions by caching TCP segments at intermediate nodes. However, it is com-
pletely based on TCP ACKs, so no link level acknowledgements are required. A
segment is not forwarded until the successor has received all previous segments.
This also prevents packet reordering, avoiding the need for resequencing buffers.
Like with DTC, TCP segments are cached at intermediate nodes. A node al-
ways caches the TCP segment containing the first byte of data that has not yet
been acknowledged or forwarded by the successor node towards the destination.
A node knows that the successor has received a segment when it overhears the
successor forwarding the segment further or the successor spoofs a TCP ACK
acknowledging that segment. A segment known to be received by the successor
will be removed from the cache. As with DTC, the cache holds only one packet.
However, a buffer is required for temporarily storing packets waiting to be for-
warded to the successor node. As with DTC, a retransmission is triggered by a
timeout of 1.5 rtt.

TCP ACKs are not cached, but two mechanisms are employed to regenerate
them. One is the same as used by DTC. The other one uses a timeout for
acknowledgement regeneration if it does not overhear the acknowledgement to
be forwarded by the successor node towards the TCP sender. The timeout is
twice the average time measured between transmitting an acknowledgement to
the successor and the successor forwarding it further.

For both DTC and TSS to work, no protocol changes are required at the
sender or the receiver. However, symmetric and relatively stable routes are
assumed for correct functionality. Furthermore, acknowledgements are modified,
dropped and recreated in non-standard ways.

16

4.3 6Glowpan

6lowpan is a working group within the IETF concerned with the specification
of transmitting IPv6 packets over IEEE 802.15.4 networks. The IEEE 802.15.4
standard targets low-power wireless personal area networks (LoWPANSs). Such
LoWPANS consist of devices characterized by short range, low bit rate, low
power and low cost. As a result, these devices typically are severely constrained
and have only limited capabilities. 802.15.4 is covered in more detail in Sec-
tion 3.1.

Currently, there are two 6lowpan internet drafts [23] and [25]. The former
gives an overview, motivation and a problem statement while the latter dives
into technical details and defines the frame format for transmission of IPv6
packets over 802.15.4 networks. Furthermore, creation of IPv6 link-local ad-
dresses and statelessly autoconfigured addresses on top of 802.15.4 networks is
described. As IPv6 requires support of packet sizes larger than the maximum
802.15.4 frame size, an adaptation layer is defined. To make IPv6 practical on
802.15.4 networks, mechanisms for header compression and provisions for packet
delivery in 802.15.4-based meshes are defined.

IEEE 802.15.4 defines four types of frames: beacon, MAC commands, data
and acknowledgment frames. IPv6 packets are carried on data frames. It is
recommended that these frames are acknowledged using the optional link-layer
acknowledgment scheme of 802.15.4 to aid link-layer recovery. Use of the beacon-
enabled 802.15.4 mode is not required for transporting IPv6 packets. Although
not required by 802.15.4, for carrying IPv6 packets it is necessary to specify
both source and destination addresses in the 802.15.4 frame header.

4.3.1 Addressing Modes

802.15.4 defines two types of addresses, IEEE 64-bit extended addresses and
16-bit short addresses unique within the PAN. Both types are supported by
6lowpan. However, 6lowpan imposes additional constraints on the short 16-bit
addresses where specific prefixes have to be used depending on the type of the
address. Unicast, multicast and reserved (for future use) prefixes are allocated
in a new TANA registry.

Note that a 16-bit short address is only available after an association event.
These short addresses addresses are rather transient in nature as their validity
and uniqueness are limited by the lifetime of the association event and rely on
the PAN coordinator. Hence, they should be used with caution.

It is assumed that a PAN maps to a specific IPv6 link, implying a unique
prefix. Hence, the 16-bit PAN ID can be mapped to an IPv6 prefix. This can be
used to implement IPv6 multicast by a link-layer broadcast limited to a PAN.

6lowpan also provides for stateless address autoconfiguration. As each 802.15.4
device has an EUI-64 identifier [18] assigned to it, an IPv6 interface identifier
[17] can be obtained from this EUI-64 identifier using the stateless autoconfig-
uration described in [8].

Although all 802.15.4 devices have an EUI-64 address, it is also possible
to use the short 16-bit addresses for autoconfiguration. In this case a pseudo
48-bit address is formed by concatenating the 16-bit PAN ID (or 16 zero-bits
if unknown), 16 zero bits and the 16-bit short address from left to right. The
result would then be

17

16_bit_PAN_ID:16_zero_bits:16_bit_short_address

The IPv6 interface identifier is formed from this 48-bit pseudo address using the
stateless autoconfiguration [8]. However, the “Universal/Local” (U/L) bit should
be set to zero in the resulting interface identifier to reflect that such identifier
is not globally unique. Furthermore, all-zero addresses are not allowed in both
cases.

The mapping of non-multicast (unicast) IPv6 addresses to 802.15.4 link-
layer addresses follows the usual neighbor discovery in IPv6 as described in [26].
Packets with a multicast IPv6 destination address are sent to the 16-bit 802.15.4
address obtained by concatenating the 3-bit multicast prefix 101, bits 3 to 7 in
the 15-th octet and the whole 16-th octet of the IPv6 address.

4.3.2 Adaptation Layer

The IPv6 protocol requires support for a Maximum Transmission Unit (MTU)
of 1280 octets, which is well beyond the largest possible 802.15.4 frame size.
Depending on overhead, the 802.15.4 protocol data units have different data
sizes, leaving 81 to 102 octets for higher layers. Given the maximum physical
layer packet size (aMaxPHYPacketSize) of 127 octets and a maximum frame
overhead (aMaxFrameOverhead) of 25 octets, 102 octets are left at the MAC
layer. Link-layer security imposes further overhead of 21, 13 or 9 octets in case
AES-CCM-128, AES-CCM-64 or AES-CCM-32 is used, respectively. In the case
of AES-CCM-128, only 81 octets are left available. This clearly is below the IPv6
MTU requirement, so an adaptation layer for fragmentation and reassembly is
provided between layer two and three. This adaptation layer will be described
in more detail.

IP datagrams transported over 802.15.4 are prefixed by an encapsulation
header. Tt starts the 802.15.4 MAC protocol data unit (PDU) and is followed
by the LoOWPAN payload, e.g the IP header and payload. In case the M bit is set
in the encapsulation header, a Mesh Delivery field follows before the LoWPAN
payload. The encapsulation formats defined are referred to as the LoWPAN
encapsulation.

The header starts with a 2-bit LF field, which indicates whether the frame is
unfragmented (00) or it is the first (01), interior (11) or last (10) fragment. For
the unfragmented case, a 2-octets long encapsulation header is used while for the
fragmented case the header is 4-octets long. If the datagram does not fit within
a single 802.15.4 frame, fragmentation is used. Upon receipt of link fragments,
the recipient reconstructs the original unfragmented packet. The fragment-type
encapsulation header includes a field indicating the complete datagram length,
allowing the recipient to determine the size of the reassembly buffer. Details of
the fragmentation and reassembly as well as the encapsulation header fields can
be found in [25].

The adaptation layer provides also additional functionality beyond just frag-
mentation and reassembly. It includes an 8-bit prot_type field indicating what
type of datagram follows after the header. This provisions for header compres-
sion usage in higher layers, which is discussed in Section 4.3.3. For IPv6, the
prot_type value is 1, while 2 indicates header compression. Assignments of
prot_type values are handled by a IANA registry. Furthermore, the header
contains fields provisioning for mesh delivery — the M bit can be set in the en-

18

capsulation header, indicating that a Mesh Delivery field precedes the LoWPAN
payload. Mesh delivery is discussed in more detail in Section 4.3.4.

Although the main reason for the adaptation layer is IPv6 compliance, it is
expected that most 802.15.4 applications will not produce large packets. Using
appropriate header compression, such packets could well fit into single frames.
Nevertheless, the protocols themselves do not restrict bulk data transfers.

4.3.3 Header Compression

Even though 81 octets are left in a 802.15.4 frame for IPv6, the IPv6 header
alone is 40 octets long, leaving 41 octets for upper layers. In case UDP is used,
which has a header of 8 octets, only 33 octets can be used for application data.
Note that the adaptation layer described in Section 4.3.2 further decreases the
available space by 2 to 4 octets. These severe space restrictions make the use
of header compression almost unavoidable.

Compared to published work and standardized approaches to header com-
pression, IPv6 over 802.15.4 differs in several ways. Existing work assumes many
flows between two devices while in 6lowpan only one flow is expected most of
the time. Taking into account the limited packet sizes, integrating layer 2 and
3 compression seems viable. Furthermore, 802.15.4 devices would be mostly
deployed in multi-hop networks. These differ from usual point-to-point link
scenarios where the compressor and the decompressor are in direct, exclusive
communication with each other. If preliminary context is required, which is
often the case, building it should not rely exclusively on the in-line negotiation
phase, so that already the fist packet sent could be compressed.

As the header compression changes packet format, its usage is indicated
by setting the prot_type field in the encapsulation header to 2. Any new
packet formats required by header compression could define new values for the
prot_type field and reuse the basic packet formats.

If compressing the headers results in alignment not falling on an octet bound-
ary, the remainder after the compressed headers is padded with zeros until the
next octet boundary.

6lowpan currently defines header compression for IPv6 and UDP headers.
Both will be described in more detail.

IPv6 header encoding

IPv6 header compression is possible even without a context-building phase as
devices already share some state by virtue of having joined the same 6lowpan
network. In particular, following values can usually be compressed: the Version
is IPv6, both IPv6 Source and Destination Addresses are link local and the
last 64 bits can be inferred from MAC layer source and destination addresses,
the Packet Length can be inferred from the layer two Frame Length field in
802.15.4 PPDU or from the datagram_size field in the fragment header if it
is present, Traffic Class and Flow Label are both zero and the Next Header is
one of UDP, TCP or ICMP. Only the 8-bit Hop Limit field always has to be
carried in full. Depending on how well a particular packet matches the described
common case, several fields may have to be carried “in-line”. The compression
scheme used for the IPv6 header is called HCI. The compressed header starts
with an 8-bit HCI encoding field, which is followed by non-compressed fields.

19

Bits 0 — 1 are used for the IPv6 source address and bits 2 — 3 for the destination
address. For each of the addresses, one bit indicates whether a link-local prefix
is assumed or the prefix is carried in-line. The other bit indicates whether the
interface identifier is derivable from the link-layer address or is carried in-line.
For mesh routing, the corresponding link-layer address is in the Mesh Delivery
field. Bit 4 indicates whether Traffic Class and Flow Label are zero or their
full 8- and 20-bit values are being sent. Bits 5 — 6 indicate whether the Next
Header is UDP, TCP, ICMP or its full 8-bit value is being carried in-line. The
last bit indicates whether HC2 encoding follows the HC1 encoding or no more
header compression bits follow after the HC1 encoding. Bits 5 — 6 also indicate
which particular type of the HC2 encoding follows, i.e. a UDP, TCP or ICMP
encoding. The HC1 encoding field is followed by the Hop Limit field, which is
always present. Other non-compressed fields, if any, follow after the Hop limit
field. After these follows the actual next header such as UDP, TCP or ICMP, as
specified by the Next Header field in the original IPv6 header. Using the HC1
encoding, the common IPv6 header, as described, can ideally be compressed
from 40 octets to 2, where one octet is used for the HC1 encoding and one for
the Hop Limit. Details of the header layout and the meaning of various bit
values can be found in [25].

UDP header encoding

While the HC1 encoding specifies compression for the IPv6 header, allowing the
Next Header field compression for ICMP, UDP and TCP, further compression
of each of the corresponding protocol headers is possible using the HC2 en-
coding. At the moment, only UDP header compression is specified. TCP and
ICMP header compressions are to be determined later. The UDP HC2 header
compression is called HC_UDP. This compression only applies if bits 5 — 6 in-
dicate that the protocol following the IPv6 header is UDP and bit 7 indicates
the presence of HC2 encoding. Following fields can be compressed in the UDP
header: Source Port, Destination Port and Length. The UDP checksum is al-
ways carried in full. While the Length field can be deduced from information
available in other headers, the port fields have to be carried in-line either in full
or partially compressed. The HC_UDP header starts with an 8-bit HC_UDP
encoding field. Bit 0 indicates whether the UDP source port is compressed to 4
bits or completely carried in-line. If compressed, the actual 16-bit port number
is calculated as P + short_port. P is a number to be determined and coor-
dinated with a TANA registry. short_port is a 4-bit value carried in-line. Bit
1 is used for the UDP destination port with meaning analogical to the source
port. Bit 2 indicates whether the length field is calculated from the Payload
Length in the IPv6 header minus the length of extension headers between IPv6
and UDP headers or carried in-line. Bits 3 — 7 remain reserved for future use.
The HC_UDP encoding field is followed by non-compressed or partially com-
pressed fields carried in-line. These have to be in the same order as they would
appear in a normal UDP header, i.e. source port, destination port, length and
checksum. The HC_UDP scheme allows compressing the UDP header from 8
octets to 4. Details of the header layout and the meaning of various bit values
can be found in [25].

20

4.3.4 Provisions for Meshes

Although 802.15.4 networks are expected to commonly use mesh routing, the
802.15.4 standard [19] does not define such capabilities. Therefore, Glowpan
specifies provisions required for packet delivery in 802.15.4 meshes. In a mesh
scenario, devices do not require direct reachability to communicate with each
other. Instead, intermediate devices are used as forwarders towards the final
destination. From the two devices, the sender is known as the Originator and the
receiver as the Final Destination. In order to achieve mesh delivery capabilities,
the link-layer addresses of the Originator and the Final Destination have to be
included in addition to the hop-by-hop source and destination.

For this purpose, the encapsulation header includes the M and B bits. Setting
the M-bit indicates that a Mesh Delivery field follows the encapsulation header.
The Mesh Delivery field carries the Originator and Final Destination addresses,
providing for both IEEE extended 64-bit addresses and short 16-bit addresses.
The B-bit indicates whether the destination is a unicast or a multicast address.
For the former, a Unicast Mesh Delivery Field is used, while the latter uses a
Broadcast Mesh Delivery Field carrying additional information. Additionally,
the Mesh Delivery field contains a Hops Left field, which is decremented at
each node when the frame is forwarded. When a value of zero is reached, the
frame is discarded. More details about the header layout and interpretation of
various bit values can be found in [25].

For just using mesh forwarding, a device does not necessarily have to partic-
ipate in mesh routing protocols. While the FFDs are expected to participate as
mesh routers, RFDs can limit themselves to discovering FFDs and using them
for all their forwarding in a manner similar to IP hosts using a default gateway
for all off-link traffic. A full specification of mesh routing such as specific pro-
tocols, interaction with neighbor discovery or controlled flooding are out of the
6lowpan scope.

21

Chapter 5

DTN

The delay- and disruption-tolerant interoperable networking (DTN) embraces
an occasionally connected network that may suffer from frequent partitions and
may be composed of more than one divergent set of protocol families. The basis
of the architecture comes from the Interplanetary Internet [22], which focused
on deep space communication in high-delay environments. Such architecture
can among others readily be extended to occasionally connected networks such
as sensor-based networks using (scheduled) intermittent connectivity and ter-
restrial wireless networks where end-to-end connectivity cannot be maintained.
The DTN architecture is formally specified by Internet drafts from the DTNRG
research group within the IRTF. A higher-level overview can be found in [31],
[14] and [5].

The DTN architecture defines an end-to-end message-oriented bundle layer.
This layer exists above the transport layers of the underlying networks and be-
low the application layers. Devices implementing this bundle protocol are called
DTN nodes. The bundle layer employs persistent storage to deal with network
interruptions. It involves a reliable hop-by-hop transfer of reliable delivery re-
sponsibility and an optional end-to-end acknowledgment scheme.

Applications send so called Application Data Units (ADU), where each ADU
is transformed into one or more bundles. The relative order of the ADUs might
not be preserved during transfer. The bundles wait in a queue until a commu-
nication opportunity is available. Hence, a sufficient amount of storage has to
be available. This storage has to be persistent and robust in order to survive
application and operating system restarts and crashes.

5.0.5 Endpoint Identifiers (EID)

In order to identify the communication endpoints, variable-length endpoint iden-
tifiers (EDI) are used. Each node has at least one unique EID. These use the
general syntax of URIs. An EID is composed of a scheme and a scheme-specific
part (SSP). The interpretation of an SSP is defined by the respective scheme.
In contrast to DNS name to IP address early binding, EIDs use late binding.
Hence, the binding does not necessarily happen at the source and it might be
the case that the mapping for an EID is not known at the time the transmission
is started. An application wishing to receive traffic for a specific EID has to
register for that EID. Such a registration is persistent in the sense that it sur-

22

Custody Transfer Requested

Source Node Custody Acceptance Required
Report When Bundle Received

Report When Bundle Custody Accepted
Report When Bundle Forwarded

Report When Bundle Delivered

Report When Bundle Deleted

Report When Bundle Acknowledged By Application
Confidentiality Required

Authentication Required

Error Detection Required

Table 5.1: DTN Delivery Options

vives reboots. Furthermore, a registration may fail. For example, an attempt to
register for an invalid EID would fail. An EID refers to a set of DTN nodes and
a node can determine from an EID the minimum reception group (MRG) of an
EID. The MRG is a minimum set of nodes, to which a bundle must be deliv-
ered in order to complete the data transfer. This allows to use EIDs for single
nodes as well as for multicast and anycast groups. Due to the possible delays
in receiving a registration for a multicast group EID, some nodes may have to
act as archivers of multicast messages in case someone joins the multicast group
later.

5.0.6 Priority Classes

Several priority classes are defined. In increasing importance they are bulk, nor-
mal and expedited. First, bundles of higher priorities are transmitted. However,
the prioritization affects only bundles from the same source. Optionally, nodes
may enforce prioritization even across different sources.

5.0.7 Delivery Options

Applications can set various delivery options for ADUs. The delivery options
can be used to track the transfer of bundles, request various additional and
diagnostic information, an end-to-end acknowledgment, custody and several se-
curity features such authentication (signing), confidentiality (encryption) and
error detection (signatures to detect modifications). The security-related op-
tions are optional and only apply if security is enabled. A listing of all available
options can be found in Table 5.1. In response to bundles with some of the
above mentioned options set, bundle status reports are generated. These pro-
vide information and diagnostic responses, corresponding to the ICMP protocol
in IP [27]. However, in contrast to ICMP, bundles contain an additional field
for a report-to EID in addition to source and destination EIDs. This report-to
identifier may be different from the source identifier.

5.0.8 Custody Transfers

The most basic service provided by the bundle layer is unacknowledged unicast
message delivery. The delivery reliability can be enhanced by requesting cus-

23

tody transfers. Custody transfer means moving the responsibility for reliable
delivery of an ADU’s bundles among different DTN nodes. This is similar to
moving responsibility for email messages between different email servers using
the SMTP protocol. A node accepting a custody transfer is called a custodian.
It has to make sure that the bundles are stored in persistent storage and can
only remove them once the custody has been successfully transferred to another
node. If a node accepts a custody transfer, a Custody Transfer Accepted Signal
is sent back to the previous custodian. The new custodian then updates the Cus-
todian EID field in the respective bundle(s) before it is forwarded further. Note
that not all nodes are required to accept a custody transfer. This may happen
if e.g. a node would not have sufficient storage space. The decision of accept-
ing a custody transfer is based on solving a resource allocation and scheduling
problem. In general, applications do not have to request custody transfers. The
successful delivery of bundles relies on the reliability mechanisms of the under-
lying protocols below the bundle layer. With custody transfer requested, the
bundle layer provides an addition timeout and retransmission mechanism and
a custodian-to-custodian bundle-layer acknowledgment scheme.

In a network with strictly one-directional custodian-to-custodian hops, the
custody transfers will not be acknowledged as there is no way to back-signal the
custody transfer acknowledgments. For this case, a mechanism is provided to
ameliorate the incorrect information that a bundle has been lost. If the option
“Report When Bundle Forwarded” is set, the nodes would report the existence
of a known one-way path using a bundle status report.

5.0.9 Contact Types

The DTN architecture provides also a framework for routing and forwarding for
unicast, anycast and multicast bundles. Links between nodes can have varying
delay and capacity over time. Furthermore, some links be one-directional only.
The period of time when a link’s capacity is strictly positive is called a contact.
If contacts and their capacities are known ahead of time, smart routing and
forwarding decisions can be made. Handling situations with lossy delivery paths
or unknown contact intervals or capacities are still an active research area.
Based on predictability of performance characteristics, contacts can be divided
into following categories:

persistent — always available, such as DSL or cable modem connections

on-demand — an action has to be taken to initiate contact, but then acts as a
persistent contact. An example would be a dial-up connection.

intermittent - scheduled — the contact schedule is known ahead of time, such
as with a low-earth orbiting satellite

intermittent - opportunistic — contacts presenting themselves unexpectedly,
such as an aircraft flying by or a PDA passing by with bluetooth connec-
tion enabled. There is no pre-determined schedule for these contacts.

intermittent - predicted — based on on fixed schedule, but likely contact
times can be predicted from history of contacts or other information.

24

5.0.10 Fragmentation

The DTN framework provides fragmentation and reassembly mechanisms to
improve efficiency of bundle transfers by fully utilizing contact bandwidth and
period and avoiding retransmission of partially transferred bundles. There are
two forms of fragmentation, proactive and reactive. In proactive fragmentation
a DTN node may divide an ADU into multiple bundles and transmit them
independently. The final destination is then responsible for reassembling the
complete ADU from the smaller bundles. This approach is used primarily when
contacts are known in advance or can be predicted. With reactive fragmentation
nodes may fragment a bundle cooperative when only part of it is transferred.
The receiving node then modifies the bundle to indicate that it is a fragment and
forwards it further as usual. The other node may learn that only a part of the
bundle was transferred to the next hop and transmit the remaining portion of
the bundle during subsequent contact opportunities. This may well happen via
different next-hop nodes if routing changes. The reactive fragmentation is not
required for every DTN implementation, but fragment reassembly is. Reactive
fragmentation may pose significant challenges in case of digital signatures and
authentication codes. In case DTN security is enabled, proactive fragmentation
may have to be used.

Although of importance, the issues of congestion and flow control have not
yet been resolved withing the DTNRG research group.

5.0.11 Time Synchronization

The DTN architecture depends on time synchronization between DTN nodes
primary for the following reasons:

e bundle expiration time computations — Each bundle contains a creation
timestamp and an explicit expiration field (number of seconds after cre-
ation) on each bundle. These are used to determine how long a bundle is
valid and when it can be discarded.

e bundle and fragment identification — The concatenation of the creation
timestamp and the source EID serves as a unique identifier for an ADU.
Such identified is used by custody transfers and bundle fragments reassem-
bly.

e routing with scheduled or predicted contacts

e application registration expiration — Application registrations for for re-
ceiving traffic for an EID are maintained only for a finite time, specified
during the registration.

5.0.12 Security

The possibility of severe resource scarcity in some DTN networks requires some
form of authentication and network access control. For example, it should not be
possible for an unauthorized user to flood the network, possibly denying service
to legitimate users. Furthermore, unauthorized traffic should not be forwarded

25

at all over some special, mission-critical links. For this purpose the DTN frame-
work standardizes a security architecture . It utilizes both end-to-end and hop-
by-hop authentication and integrity mechanisms. Using both approaches allows
to handle access control for data forwarding separately from application-layer
data integrity. While the end-to-end mechanisms may be used to authenticate
principals such as users, the hop-by-hop mechanisms authenticate DTN nodes as
legitimate bundle transceivers to each other. If authentication or access control
checks fail, traffic is discarded as early as possible by the DTN nodes. The pur-
pose for standardizing a DTN security architecture is that standard approaches
have shortcomings due to the delays and disconnections in a DTN environment,
making updating access control lists, revoking credentials or frequent accesses
to an authentication server unattractive. Note that the security architecture is
optional for DTN.

5.0.13 State Maintenance

Various types of state have to be managed by the bundle layer.

Application registration state is created by applications and removed by an
explicit request or timeout. The state should be retained across application and
system restarts. Due to the possibly high round-trip time, an application might
have to be restarted when a response comes back. State information has to be
maintained to enable a correct reinstantiation of the respective application.

A custodian has to keep account of bundles for which is has accepted cus-
tody. Additionally, protocol state related to transferring custody has to be
maintained. Custody state information related to a bundle can be released
when a Custody Transfer Succeeded signal is received, indicating that custody
has been transferred to another node.

Information related to routing and forwarding has to be maintained. Bundles
to be forwarded may stay in queues for considerable amounts of time while
waiting for a communication opportunity. While unicast and anycast bundles
may be discarded after a successful transfer to the next hop, multicast bundles
constitute an additional burden as the have to be archived longer in case a
registration for the multicast group arrived later.

In case the DTN security approach is enabled, additional state information
needs to be maintained. This includes node’s own private information, cre-
dentials and revocation lists, access control lists including updates and cached
possibly public information and credentials of their next-hop neighbors.

Finally, each node has to maintain its own configuration and policy state.

As bundle delivery has to operate over networks with significant delays,
applications using the DTN networks should be designed in a delay-tolerant
fashion as well. Communication primitives provided by the DTN architecture
are based on an asynchronous, message-based communication rather than a
request-response model. ADUs created by an application should be sufficiently
self-contained to be treated independently by the receiver rather than rely on
information in other ADUs.

Due to the possibly long delays between sending a message and obtaining
a response, an application may terminate before the response arrives. The
application should be designed in a way allowing for easy reinstantiation using
save state information from persistent storage.

26

5.0.14 Convergence Layer

As the DTN architecture uses for the underlying communication various differ-
ent protocols offering varying functionality, additional per-protocol adaptation
may be accomplished by a convergence layer between the bundle layer and the
underlying protocol layer. The complexity of these convergence layers may dif-
fer across protocols, but would provide a consistent interface for the bundle
layer. For example, for some protocols, the convergence layer would have to
implement an acknowledgment scheme while other protocols, such as TCP/IP
might already include it. The convergence layer for TCP/IP is defined in [10].

5.1 LTP

Another underlying protocol that can be used is the Licklider Protocol (LTP),
which will be described in more detail. An overview of LTP can be found in
[6]. LTP is intended as a reliable convergence layer over single-hop deep-space
RF links, i.e. links with extremely long round trip times and/or frequent inter-
ruptions in connectivity, but can be applied in other environments as well. The
basis of LTP design comes from the Consultative Committee for Space Data
Systems (CCSD) File Delivery Protocol (CFDP). CFDP provides reliable file
transfer across interplanetary distances by detecting loss and automatically re-
transmitting. CFDP itself, however, has only rudimentary built-in networking
capabilities. LTP’s design notions are directly descended from CFDP’s retrans-
mission procedures.

LTP is basically a point-to-point protocol between two antennae. Hence, it
is assumed that the operating environment is able to pass information on the
link status, the so called “link state cues” to LTP. This assumption is motivated
by the interplanetary communication, where effort is spent on having the right
antenna orientation and transmission power. Hence, LTP is informed when
data should be transmitted and received. This allows for deferring transmission
if there is no link. Furthermore, timers can be suspended during interrupted
connectivity. The round trip times are assumed to be deterministic and are es-
timated from the distance between the two communication endpoints assuming
signals not moving faster than at the speed of light.

Although LTP is a stateful protocol, it does not use any negotiation or
handshakes before exchanging data. Typically long round-trip times result in
having a rather large number of transmissions concurrently in flight. As the loss
of transmission state due to rebooting or power cycling an LTP engine would
result in rather costly retransmissions, transmission information is retained in
non-volatile memory.

A single LTP association between two nodes can accommodate several con-
current sessions, one for each block of data in transit. As there are no multiple
paths, it is assumed that packets cannot be reordered on the link. However, loss
or corruption of packets can occur.

LTP provides partial reliability for data transmission. The application can
mark which data is “red” and which is “green”. Delivery of “red” data is then
guaranteed by using acknowledgments while for the “green” data best effort
delivery is used. The motivation is that some data is worthless without the
corresponding header, but missing only part of the data is still OK. Technically,

27

each block of data contains a “red” and “green” part, where each can of zero
length.

LTP sports laconic acknowledgments, where acknowledgments are aggre-
gated into reception reports. These reports are sent only upon encountering
specific solicitations for reception reports, so called “checkpoints”. The recep-
tion reports are mandatory at the end of “red” data and at the end of trans-
mission. The operation of LTP is then to send segments, receive a report and
acknowledge the reception of the report. Using the selective acknowledgments,
LTP provides reliable communication.

28

Chapter 6

Proposed work

The aim of the proposed Master Thesis is to investigate connecting wireless
sensor networks to the Internet. The hardware platform will be the MicaZ
and TelosB motes from CrossBow Technologies running the TinyOS system.
These motes support the 802.15.4 wireless communication standard, which will
be used. IP connectivity and higher layer protocols, such as UCP, TCP and
ICMP will have to be enabled on the motes. For this, the 6lowpan standard is
envisioned to be used.

The focus of the work will be on investigating and evaluating mesh network-
ing over 802.15.4 links on the motes. For this purpose, a test bed will be set up.
While the 802.15.5 standard is aimed at 802.15.4 links, wireless sensor networks
sport rather intermittent connectivity due to the nodes spending a significant
portion of their life time in sleep states. For this purpose, other mesh network-
ing protocols developed for MANETSs might be investigated and insights from
DTN can be applicable as well.

29

Bibliography

[1] Hari Balakrishnan, Srinivasan Seshan, Elan Amir, and Randy H. Katz.
Improving TCI/IP performance over wireless networks. In MobiCom 95:
Proceedings of the 1st annual international conference on Mobile computing
and networking, pages 2-11, New York, NY, USA, 1995. ACM Press.

[2] Andreas Birk. Fast Robot Prototyping with the CubeSystem. In Pro-
ceedings of the International Conference on Robotics and Automation,
ICRA’2004. IEEE Press, 2004.

[3] R. Braden. Requirements for Internet Hosts - Communication Layers. RFC
1122, IETF, October 1989.

[4] T. Braun, T. Voigt, and A. Dunkels. Energy-Efficient TCP Operation in
Wireless Sensor Networks. Prazis der Informationsverarbeitung und Kom-

munikation (PIK), 2005.

[5] S. Burleigh, A. Hooke, L. Torgerson, K. Fall, V. Cerf, B. Durst, K. Scott,
and H. Weiss. Delay-tolerant networking: an approach to interplanetary
Internet. IEEE Communications Magazine, 41(6):128-136, 2003.

[6] Scott C. Burleigh, M. Ramadas, and Stephen Farrell. Licklider Transmis-
sion Protocol - Motivation. Internet-Draft Version 03, IETF, September
2006.

[7] David D. Clark. Window And Acknowledgement Strategy in Tcp. RFC
813, IETF, July 1982.

[8] Matt Crawford. Transmission of IPv6 Packets over Ethernet Networks.
RFC 2464, IETF, December 1998.

[9] Crossbow Technology, Inc. Mica2 Datasheet. http://www.xbow.com/
Products/Product_pdf_files/Wireless_pdf/MICA2 Datasheet.pdf.

[10] M. Demmer. Delay Tolerant Networking TCP Convergence Layer Protocol.
Internet-Draft Version 00, IETF, October 2006.

[11] A. Dunkels. Full TCP/IP for 8-bit architectures. In In Proceedings of
The First International Conference on Mobile Systems, Applications, and
Services (MOBISYS ‘03), May 2003.

[12] A. Dunkels, J. Alonso, and T. Voigt. Making TCP/IP Viable for Wireless
Sensor Networks. In 1st Furopean Workshop on Wireless Sensor Networks
(EWSN 2004), 2004.

30

http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICA2_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICA2_Datasheet.pdf

[13]

[14]

[15]

[16]

Adam Dunkels. Minimal TCP/IP implementation with proxy support.
Master’s thesis, Swedish Institute of Computer Science, February 2001.

Stephen Farrell, Vinny Cahill, Dermot Geraghty, Ivor Humphreys, and
Paul McDonald. When TCP Breaks: Delay- and Disruption- Tolerant
Networking. IEEE Internet Computing, 10(4):72-78, 2006.

D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The
nesC Language: A Holistic Approach to Networked Embedded Systems. In
PLDI03. ACM, June 2003.

J. Hill, P. Bounadonna, and D. Culler. Active Message Communication
for Tiny Network Sensorss. http://webs.cs.berkeley.edu/tos/papers/
ammote.pdf.

Robert M. Hinden and Stephen E. Deering. Internet Protocol Version 6
(IPv6) Addressing Architecture. RFC 3513, IETF, April 2003.

IEEE. Guidelines for 64-Bit Global Identifier (Eui-64) Registration Au-
thority.

IEEE. IEEE standard for information technology - telecommunications
and information exchange between systems - local and metropolitan area
networks specific requirements part 15.4: wireless medium access control
(MAC) and physical layer (PHY) specifications for low-rate wireless per-
sonal area networks (LR-WPANSs), 2003.

IEEE. IEEE P802.15.5 Draft Candidate, November 2005.

IEEE. Preliminary Draft of Baseline Document for 802.15.5 Mesh Net-
working, July 2006.

Interplanetary Internet. http://www.ipnsig.org/.

Nandakishore Kushalnagar and Gabriel Montenegro. 6LoWPAN:
Overview, Assumptions, Problem Statement and Goals. Internet-Draft
Version 05, IETF, August 2006.

X. Luo, K. Zheng, Y. Pan, and Z. Wu. A TCP/IP implementation for
wireless sensor networks. In IEEE International Conference on Systems,
Man, and Cybernetics, 2004.

Gabriel Montenegro and Nandakishore Kushalnagar. Transmission of IPv6
Packets over IEEE 802.15.4 Networks. Internet-Draft Version 06, IETF,
November 2006.

Thomas Narten, Erik Nordmark, William Allen Simpson, and Hesham Soli-
man. Neighbor Discovery for IP version 6 (IPv6). Internet-Draft Version
09, IETF, October 2006.

J. Postel. Internet Control Message Protocol. RFC 792, IETF, September
1981.

Behcet Sarikaya. Serial forwarding approach to connecting TinyOS-based
sensors to IPv6 Internet. Internet-Draft Version 00, IETF, February 2006.

31

http://webs.cs.berkeley.edu/tos/papers/ammote.pdf
http://webs.cs.berkeley.edu/tos/papers/ammote.pdf
http://www.ipnsig.org/

[29] Sendt. http://down.dsg.cs.tcd.ie/sendt/. Web Page.

[30] Kannan Srinivasan, Prabal Dutta, Arsalan Tavakoli, and Philip Levis.
Some Implications of Low Power Wireless to IP Networking. In Fifth Work-
shop on Hot Topics in Networks (HotNets-V), 2006.

[31] Vinton G. Cerf and Scott C. Burleigh and Robert C. Durst and Dr. Kevin
Fall. Delay-Tolerant Network Architecture. Internet-Draft Version 07,
IETF, October 2006.

[32] ZigBee Alliance. http://www.zigbee.org/.

32

http://down.dsg.cs.tcd.ie/sendt/
http://www.zigbee.org/

	1 Introduction
	2 Hardware Platforms and Operating Systems
	2.1 TinyOS
	2.2 RoboCube and CubeOS
	2.3 Unix-like systems

	3 PHY and MAC Layers
	3.1 802.15.4
	3.1.1 Network topologies
	3.1.2 Data transfers in beacon-enabled and non-beacon networks
	3.1.3 Robustness
	3.1.4 Security
	3.1.5 Implications for higher layers
	3.1.6 802.15.4a Task Group
	3.1.7 802.15.4b Task Group
	3.1.8 ZigBee Alliance

	3.2 802.15.5

	4 Above the Link-Layer
	4.1 Proxy
	4.1.1 Sensor Internet Protocol
	4.1.2 Serial Forwarder

	4.2 uIP
	4.2.1 TCP/IP Optimizations for Wireless Sensor Networks

	4.3 6lowpan
	4.3.1 Addressing Modes
	4.3.2 Adaptation Layer
	4.3.3 Header Compression
	4.3.4 Provisions for Meshes

	5 DTN
	5.0.5 Endpoint Identifiers (EID)
	5.0.6 Priority Classes
	5.0.7 Delivery Options
	5.0.8 Custody Transfers
	5.0.9 Contact Types
	5.0.10 Fragmentation
	5.0.11 Time Synchronization
	5.0.12 Security
	5.0.13 State Maintenance
	5.0.14 Convergence Layer

	5.1 LTP

	6 Proposed work
	Bibliography

