
Guided Research Final Report
Prefix- and Lexicographical-order-preserving IP

Address Anonymization

Matúš Harvan
m.harvan@iu-bremen.de

Spring Semester 2005

Supervisor: Jürgen Schönwälder

Contents

1 Executive summary 2

2 Summary 3

3 Introduction 4

4 Prefix-preserving IP address anonymization 5

5 Prefix- and lexicographical-order-preserving IP address anonymization 8

6 Security Section 12

7 Implementation 13

8 Conclusion 15

mailto:m.harvan@iu-bremen.de


1 Executive summary

The aim of this project is to investigate on the existence and feasibility of a prefix-preserving
and lexicographical-order-preserving IP address anonymization. Such an anonymization
has been found and proven in a rigorous way to work correctly. Furthermore, the anonymiza-
tion scheme has been implemented in the form of a C library and a sample tool.

The found IP address anonymization scheme can be used for various purposes. However,
the main reason for this project is the need to anonymize SNMP traffic traces. Simple
Network Management Protocol (SNMP) is a protocol to access management and control
information of network devices. It is very lightweight and capable of easily monitoring
thousands of devices simultaneously. Therefore, it is used extensively in enterprise networks
and by ISPs. However, it is not understood how exactly SNMP performs in practice, what
are the various interactions, where exactly the real problems are and optimizations are
done for assumed bottlenecks as there is no data available to the research community
from operators of large networks. The operators are concerned about the privacy of their
networks’ users and afraid of providing potential attackers with sensitive information about
their network allowing for easier break-ins. The found anonymization scheme is the first
step to a complete anonymization of SNMP traffic traces and would in the end allow access
to traces of real-world traffic to the research community.

2



2 Summary

The aim of this project is to investigate on the existence and feasibility of a prefix-preserving
and lexicographical-order-preserving IP address anonymization. Such an anonymization
has been found and proven in a rigorous way to work correctly. Limits on its usage as
well as security aspects are discussed. Furthermore, a C library implementing the found
anonymization scheme has been developed.

The main reason for investigating on the prefix- lexicographical-order-preserving anonymiza-
tion scheme is the need to anonymize SNMP traffic traces. Simple Network Management
Protocol (SNMP) is a protocol to access management and control information of network
devices. It is a lightweight, stateless protocol used extensively in enterprise networks and
by ISPs. Large amounts of new MIB modules are being produced (on customer requests) by
companies as Enterasys, Juniper or Cisco[5], showing the popularity and wide deployment
of SNMP. However, due to the lack of available traces from operational Internet networks
it is not known how exactly SNMP is used in practice, which particular management appli-
cations are preferred and how efficiently they make use of available protocol options. The
lack of traces is caused by network operators’ concerns for the privacy and security of their
networks. The found anonymization scheme is the first step to a complete anonymization
of SNMP traffic traces and would in the end allow access to traces of real-world traffic
to the research community. This would help clarify how exactly SNMP is used, allow to
study interaction patterns of different SNMP implementations, compare performance and
evaluate different SNMP approaches.

3



3 Introduction

The aim of this project is to investigate on the existence and feasibility of a prefix-preserving
and lexicographical-order-preserving IP address anonymization. A suitable anonymization
scheme has been found, rigorously proven to be correct and implemented in the form of
a C library. Limits of the proposed anonymization and security aspects are discussed as
well.

The main reason to investigate on such an anonymization scheme is the need to
anonymize SNMP traces. This is of particular importance as no traces of SNMP traf-
fic from real-world networks are available, rendering analysis of SNMP in real networks
almost impossible. Therefore, it is not understood how exactly SNMP is used in prac-
tice and how protocol options are being used by management applications. This leads to
optimizations done for assumed interactions while not being sure if and where exactly opti-
mizations would be needed. The main reason for the absence of SNMP traces is the concern
of network operators about disclosing sensitive information by providing the traces for net-
working research. However, having a suitable anonymization scheme would be likely to
relieve the current reluctance to provide an insight into their networks and give researchers
access to anonymized versions of the traces. The main challenge involved in anonymizing
SNMP traces is to find a lexicographic-order- and prefix-preserving IP address transforma-
tion. It has to be a prefix-preserving transformation so that the anonymized trace would
still be usable if prefix relationships were important. The lexicographic-order-preserving
requirement comes from the way how SNMP works. Larger objects like tables (potentially
indexed by IP addresses) are stored in lexicographic order and are sequentially retrieved
via several smaller queries. In order for these SNMP interactions to be recognizable in
anonymized traces, the IP anonymization scheme has the additional requirement of being
lexicographic-order-preserving.

4



4 Prefix-preserving IP address anonymization

Several projects on IP address anonymization and in particular on prefix-preserving IP ad-
dress anonymization exist. One of the first publicly available tools to do prefix-preserving
IP address anonymization was tcpdpriv [3] (using the -A50 option). Unfortunately the
anonymization used is susceptible to an attack described in [8]. Of particular interest
is a more secure tool Crypto-PAn [7], implementing a cryptography-based scheme de-
scribed in [6]. This anonymization scheme is not suffering from tcpdpriv’s weaknesses.
The cryptography-based anonymization paper [6] formally characterizes prefix-preserving
functions and shows that all such functions follow a canonical form. Although none of the
mentioned projects treats preserving of lexicographical ordering, the latter project provides
important results used later in our work and therefore will be explained in more detail.
The rest of this section is adapted from [6].

First we have to formally define what we mean by prefix-preserving anonymization.

Definition 1 (Prefix-preserving Anonymization). (adapted from [6]) Two IP ad-
dresses a = a1a2 . . . an and b = b1b2 . . . bn share a k-bit prefix (0 ≤ k ≤ n) if a1a2 . . . ak =
b1b2 . . . bk and ak+1 6= bk+1 when k < n. An anonymization function F is defined as one-
to-one function from {0, 1}n to {0, 1}n. An anonymization function F is prefix-preserving
if given two IP addresses a and b that share a k-bit prefix, F (a) and F (b) share a k-bit
prefix as well.

Let us consider a geometric interpretation of the prefix-preserving anonymization.
Please note that the full IP address space can be represented by a complete binary tree.
For IPv4 addresses this tree would have height 32, while for IPv6 it would be of height 128.
Each IP address is then represented by a leaf node. Furthermore, each node corresponds
to a bit position (indicated by the height of the node) and a bit value (indicated by the
branch direction from its parent node). Addresses present in the unanonymized traffic
trace are then represented by a subtree of the complete binary tree. Let’s call this subtree
the original address tree. Let us consider an example with 4-bit addresses for simplicity.
Figure 1(a) shows a complete binary tree while Figure 1(b) shows the original address tree
(only addresses from the trace).

A prefix-preserving function then specifies a binary variable for each non-leaf node
(including the root node). This variable decides if the corresponding bit gets “flipped”
during anonymization or not. The anonymization function then rearranges the original
address tree into an anonymized address tree. The anonymization function with its variables
deciding the flipping is shown in Figure 1(c) and an anonymized address tree is shown in
1(d). It should be clear that the described anonymization function is prefix-preserving.

Theorem 1 (Canonical Form Theorem[6]). (adapted from [6]) Let fi be a function
from {0, 1}i to {0, 1} for i = 1, 2, . . . , n − 1 and f0 be a constant function. Let F be a
function from {0, 1}n to {0, 1}n defined as follows. Given a = a1a2 . . . an, let

F (a) := a′1a
′
2 . . . a′n (1)

5



where a′i = ai⊕fi−1(a1, a2, . . . , ai−1) and ⊕ is the exclusive-or operation, for i = 1, 2, . . . , n.
Then F is a prefix-preserving anonymization function and every prefix-preserving anonymiza-
tion function necessarily takes this form.

Please note that there is a natural one-to-one mapping between the canonical form of
the anonymization function and its graphical representation. Each node in the anonymiza-
tion tree, corresponding to a prefix a1a2 . . . ak, will be labeled “flip” or “no flip” when
f(a1a2 . . . ak) = 1 or 0, respectively.

[6] proves theorem 1 and finds a suitable anonymization function by using the Rijndael
cipher for functions fi. This approach is implemented in a tool called Crypto-PAn[7]. “Note
that there is a natural one-to-one mapping between the canonical form of a prefix-preserving
anonymization function and its graphical representation. Each node in an anonymization
tree (see Figure 1), as represented by its prefix a1, a2 · · · ak, will be labeled “flip” or “no
flip”, when f(a1a2 . . . ak) = 1 or 0, respectively.”[6]

6



0000

0010

0011

0110

0111

1011

1100

0001

0100

0101

1000

1001

1010

1101

1110

1111

(a) address space

0000

0010

1011

0001

0100

0101

1000

1110

1111

(b) original address tree

Leaf Node

Flip
Do Not Flip

(c) anonymization function

0000

1001

0010

0110

1100

1101

1111

1000

0111

(d) anonymized address tree

Figure 1: Address tree and prefix-preserving anonymization function [6]

7



5 Prefix- and lexicographical-order-preserving IP ad-

dress anonymization

A prefix-preserving and lexicographical-order-preserving anonymization function clearly
has to be of the canonical form described by theorem 1. In addition, it has to take into
account the lexicographical order.

Definition 2 (Lexicographical order on IP addresses). Let a = a1a2 . . . an and b =
b1b2 . . . bn be two IP addresses (of the same length) where ai’s and bi’s are bits. Then a
lexicographic ordering <l is defined by

a <l b ⇔ a1a2 . . . an <l b1b2 . . . bn ⇔ (∃m > 0)(∀i < m)(ai = bi) ∧ (am < bm) (2)

[1]

So for example we have the following order on these two IPv4 addresses: 1.2.3.4 <l

1.12.3.4.
Please note that this definition treats only the case where both IP addresses are of the

same length (eg. comparing two IPv4 or two IPv6 addresses, but not comparing an IPv4
with an IPv6 address).

Definition 3 (Lexicographical-order-preserving anonymization). An anonymiza-
tion function F is a one-to-one function from {0, 1}n to {0, 1}n. F is lexicographical-
order-preserving if given two IP addresses a and b we have

a <l b ⇒ F (a) <l F (b)

In order to preserve the lexicographical ordering of the anonymized IP addresses, we
have to look at how the address space is used by addresses in the trace.

Definition 4 (usedi). Let usedi be a function from {0, 1}i to {0, 1} for i = 1, 2, . . . , n.
usedi is defined recursively as

usedi(a1a2 . . . ai) = usedi+1(a1a2 . . . ai0) ∨ usedi+1(a1a2 . . . ai1) (3)

usedn(a1a2 . . . an) is true if the IP address a1a2 . . . ai is in the traffic trace and false

otherwise.
This function determines if any IP addresses in the subtree below the ai bit are used.

Obviously, in order to determine the values for usedi, we need to know all the IP
addresses that should be anonymized.

We can extend the example from Figure 1 with usedi. Let the addresses and orig-
inal address tree be the same as in the previous example. Figure 2(a) shows the same
anonymization function as used in the previous example. Clearly, all nodes in the original
address tree have usedi() = 1. Observe that flipping a bit for which both child nodes have
usedi = 1 (each subtree under child nodes contains at least one IP address) breaks the

8



lexicographical ordering. However, if for one of the child nodes we have usedi = 0 (there is
no IP address from that particular subtree present in the trace), flipping the corresponding
bit does not break lexicographical ordering. Figure 2(b) shows which bits can be flipped
by the anonymization function based on the values of usedi. We can now combine the
previous anonymization function with usedi (information on which bits can be flipped)
to obtain a restricted version of the previous anonymization function - not all of the bits
can be flipped any more. This restricted anonymization function is shown in Figure 2(c)
and the anonymized address tree (using the restricted anonymization function) is shown
in Figure 2(d).

Theorem 2 (Prefix-preserving and Lexicographical-order-preserving Anonymiza-
tion). Let fi, f ′

i be functions from {0, 1}i to {0, 1} for i = 1, 2, . . . , n − 1 and f0,f
′
0 be

constant functions. Let F be a function from {0, 1}n to {0, 1}n defined as follows. Given
a = a1a2 . . . an, let

F (a) := a′1a
′
2 . . . a′n (4)

where
a′i = ai ⊕ f ′

i−1(a1, a2, . . . , ai−1) (5)

f ′
i(a1, a2, . . . , ai) = fi(a1, a2, . . . , ai)

∧ ¬ (usedi+1(a1, a2, . . . , ai, 0) ∧ usedi+1(a1, a2, . . . , ai, 1)) (6)

for i = 1, 2, . . . , n. Then we claim F is a prefix-preserving and lexicographical-order-
preserving anonymization function.

f ′
i is similar to fi except that it takes into account which parts of the address space

are used. As we will see later, this is necessary for the lexicographical-order-preserving
property. Please note that the lexicographical-order-preserving property holds only for IP
addresses used in the trace, so all IP addresses need to be known beforehand. Trying
to anonymize an IP address not in the trace when usedi was generated might break the
lexicographical ordering.

Proof. To show that F is prefix-preserving, it is sufficient to observe that a′i = ai ⊕
f ′

i−1(a1, a2, . . . , ai−1) is of the form as required by theorem 1 and hence F is prefix-preserving.
For proof of theorem 1 please see [6].

To show that F is lexicographical-order-preserving, let a,b be two IP addresses of length
n-bits, sharing a k-bit prefix (ai = bi for i ≤ k and ak+1 6= bk+1 = ¬ak+1 if k < n).

For i ≤ k we have

a′i = ai ⊕ (fi−1(a1, a2, . . . , ai−1) ∧ ¬ (usedi(a1, a2, . . . , ai−1, 0) ∧ usedi(a1, a2, . . . , ai−1, 1)))

= bi ⊕ (fi−1(b1, b2, . . . , bi−1) ∧ ¬ (usedi(b1, b2, . . . , bi−1, 0) ∧ usedi(b1, b2, . . . , bi−1, 1)))

= b′i

If k = n then a = b and hence also F (a) = F (b), so the lexicographical order is
preserved. Let’s consider the case where k < n and hence a 6= b.

9



Leaf Node

Flip
Do Not Flip

(a) anonymization function 1

Leaf Node

Cannot Flip

Can Flip

(b) which bits can be flipped (usedi)

Leaf Node

Flip
Do Not Flip

(c) anonymization function 2

0000

1010

0001

0100

0101

1000

1110

1111

0011

(d) anonymized address tree

Figure 2: Address tree and prefix-preserving lexicographical-order-preserving anonymiza-
tion function

10



a′k+1 = ak+1 ⊕ fi(a1, a2, . . . , ak)∧
¬ (usedk+1(a1, a2, . . . , ak, 0) ∧ usedk+1(a1, a2, . . . , ak, 1)) (7)

If fk(a1, a2, . . . , ak) = 0, then from equation 7 we have a′k+1 = ak+1 ⊕ 0 = ak+1 and
bk+1 = b′k+1. Hence a <l b ⇒ F (a) <l F (b).

If fk(a1, a2, . . . , ak) = 1, then we have to consider four possible cases for the values of
usedk+1 in equation 7. Please note that as a1a2 . . . ak = b1b2 . . . bk we have that

usedk+1(a1, a2, . . . , ak, 0) = usedk+1(b1, b2, . . . , bk, 0)

and
usedk+1(a1, a2, . . . , ak, 1) = usedk+1(b1, b2, . . . , bk, 1)

.

1. usedk+1(a1, a2, . . . , ak, 0) = 0 and usedk+1(a1, a2, . . . , ak, 1) = 0
The values of usedi imply that no IP address from the subtree below a1a2 . . . ak is
present in the trace. Therefore, preserving lexicographical ordering between a and b
(both unused in the trace) is not necessary and the ak+1, bk+1 bits may be flipped.

2. usedk+1(a1, a2, . . . , ak, 0) = 0 and usedk+1(a1, a2, . . . , ak, 1) = 1
This implies that one of the IP addresses may present in the trace (because at least
one IP address from its subtree is used) while the other one for sure is not in the
trace (as no IP address from its subtree is used). Therefore, preserving lexicographical
ordering between a and b is not necessary and the the ak+1, bk+1 bits may be flipped.

3. usedk+1(a1, a2, . . . , ak, 0) = 1 and usedk+1(a1, a2, . . . , ak, 1) = 0
This is is similar to the previous case - only one of the IP addresses can be in the
trace. Therefore, preserving lexicographical ordering between a and b is not necessary
and the the ak+1, bk+1 bits may be flipped.

4. usedk+1(a1, a2, . . . , ak, 0) = 1 and usedk+1(a1, a2, . . . , ak, 1) = 1
This implies that both IP addresses a and b may be in the trace and hence their
lexicographical ordering has to be preserved. a′k+1 = ak+1⊕1∧¬(1∧1) = ak+1⊕0 =
ak+1 and b′k+1 = bk+1⊕0 = bk+1. It follows that a <l b ⇒ ai = bi for i ≤ k and ak+1 <
bk+1 ⇒ a′i = b′i for i ≤ k and a′k+1 < b′k+1 ⇒ F (a) <l F (b).

11



6 Security Section

In this section, we examine how feasible it is for an attacker to recover the original addresses
from an anonymized trace.

Since our scheme is prefix-preserving all the limitations and security weaknesses of
Crypto-PAn apply to it as well. In particular, the prefix-preserving property implies that
if an address is compromised, so is its prefix and hence prefixes of other addresses will be
revealed.

Clearly, the lexicographical order requirement poses further limitations on the anonymiza-
tion. The more IP addresses are used in the trace, the less bits can be flipped by the
anonymization function. In the extreme case where the whole address space is used, we
cannot anonymize any IP address. In case a complete subnet is used, it turns out that
we only can anonymize the prefix for that subnet, but the last part of the IP address
(suffix or host part) would have to remain unchanged. However, if one of the addresses is
revealed, prefix for the other addresses will be known as well. Therefore, the origin of the
anonymized trace should be kept secret as its knowledge might allow an attacker to guess
the prefix of addresses in the trace.

It also has to be noted that the address space of IPv6 compared to the one of IPv4
is significantly larger. This would allow for a more secure anonymization in case IPv6
addresses were used in the traces instead of IPv4 addresses. Furthermore, some imple-
mentations randomize the host portion of an (auto-configured) IPv6 address and hence
revealing it might be of much lower value for an attacker.

With respect to SNMP traces anonymization, we have to bear in mind that Crypto-
PAn was evaluated with respect to traces of real traffic containing IP coming from various
networks with different prefixes. In the case of SNMP, the IP addresses to be anonymized
would come from the management traffic and hence would likely be all from a small set of
subnets. Furthermore, attack techniques based on well-known frequently accessed servers
like DNS root servers or frequently visited web servers would not be very efficient as their
addresses would most probably not figure in the SNMP traces, definitely not with a high
frequency.

The number of bits flipped also depends on the choice of key for anonymization. How-
ever, choosing the key in such a way that more bits get flipped would not make the
anonymization more secure. It would only result in some keys being more probable to be
chosen, which in turn could be exploited by an attacker to find the key much faster.We
might, however, use this idea to define a metric based on how many bits can be flipped:

q =
number of times when a bit can be flipped

size of address space

=
number of times¬(usedi(...0) ∧ usedi(...1))

size of address space

12



7 Implementation

The anonymization function has been implemented as a C library and a sample program
to demonstrate its usage. The prefix-preserving part was taken from Crypto-PAn, rewrit-
ten in C and extended with the lexicographical-order preserving property. Furthermore,
AES implementation from the OpenSSL project (libcrypto library) is used for the cryp-
tographic functionality. Internally, the usedi variables are stored in a tree similar to the
original address tree from Figure 2(b). This approach has rather small computational com-
plexity as adding new nodes into a binary tree and looking up nodes in it is very efficient
(O(ln #nodes) ≈ O(#IP addresses)). The disadvantage is the memory consumption - for
a full address space we would need a tree with O(#IP addresses2) nodes. Because of the
way we have designed the anonymization scheme, all IP addresses from the trace must be
known prior to starting the anonymization. Two possible ways have been implemented
to determine the IP addresses used in the trace. One is to scan the whole trace for ad-
dresses and create the tree on the fly. The other one is to let the user define subnets, from
which addresses in the trace come. The latter has the advantage of creating consistent
anonymization on traces from the same subnet but with slightly different usage of IP ad-
dresses. For densely used parts of the address space, this “approximation” seems to be very
efficient. In order to decrease memory consumption, marking a subnet as completely used
removes all but the top node corresponding to that subnet in the address tree. However,
the implementation does not actively check for full subnets in order to prune the tree. The
approach with building the address tree in memory works for IPv4 addresses (tested with
106 randomly generated I addresses), but clearly does not scale well to IPv6 with respect
to memory complexity. The current implementation works for IPv4 only.

The library has the following API:

typedef uint32_t ipv4_t;

int initialize();

void set_key(const uint8_t * key);

void set_used(ipv4_t ip);

void set_used_prefix(ipv4_t ip,int prefixlen);

ipv4_t anonymize_pref_lex(const ipv4_t orig_addr);

void clean_up();

The library first has to be initialized with initialize() and the encryption key set with
set_key(). Then we have to pass the trace file with IP addresses twice. During the
first run, we call set_used() for each address. Alternatively, we could define complete
address prefixes (subnets) to be used with set_used_prefix(). During the second run
we anonymize the addresses with anonymize_pref_lex(). When all the anonymization is
finished, memory has to be deallocated with clean_up().

The implementation has been tested on several traces with randomly generated IP
addresses and verified to preserve lexicographical ordering. The verification process was to
order the non-anonymized trace file by IP addresses and then check if the anonymized trace

13



file is still lexicographically ordered. Additionally, memory consumption has been measured
by inserting a scanf into the anonymization program after the anonymizations are done but
before the memory is deallocated. Then using pmap ‘pgrep sample-lex‘ | grep total

was used to measure how much memory was actually used by the program. Besides that,
a counter has been added to keep track of the number of nodes in the usedi tree. The data
type for a tree node takes 16 bytes. This allows us to calculate how much memory was
requested for the tree with malloc. The rest is constant and can be found by running the
program on an empty input file. The results are summarized in Table 1. We can clearly
see that after adding the memory footprint of the program on empty input, much more
memory is consumed than theoretically requested by malloc. Depending on the size of
the trace and possible marking of subnets as completely used, the memory consumption
might be a problem.

number of measured theoretical
IP addresses number of nodes memory footprint malloc requests

0 1 2 532K 16
100 2 645 2 536K 42K

1 000 23 172 3 064K 362K
10 000 198 223 7 156K 3 098K

999 999 1 288 7401 304 552K 201 363K

Table 1: Memory footprint (units are Bytes unless stated otherwise)

In order to decrease the memory footprint, pruning of the tree for completely used
subnets might be implemented after addition of new nodes. This could help especially for
densely used address spaces. Alternatively, the pointer to parent node could be removed
from the node data type. Another possibility would be to to use a custom-made malloc

adjusted for the tree node data type.

14



8 Conclusion

A prefix-preserving and lexicographical-order-preserving IP address anonymization scheme
has been found by extending the prefix-preserving cryptography-based scheme from Crypto-
PAn [6] to preserve lexicographical order. The scheme has been rigorously proven to be
correct. Its limits as well as security aspects are discussed. Furthermore, it has been
implemented in the form of a C library.

In its current implementation the library has a rather large memory footprint. As
future work one could implement pruning of the internally used tree for completely used
subnets or use some more advanced algorithms, like path compression, to decrease the
memory requirements.

As the ultimate goal for future work I would see anonymization of complete SNMP
traffic traces. So far, the main problem with this has been the lack of a prefix- and
lexicographical-order-preserving IP address anonymization scheme. The found scheme
could be integrated with tools like libsnmp and snmpdump, possibly leading to a tool
capable of SNMP traces anonymization. Having such a tool would likely relieve the cur-
rent reluctance of network operators to allow researchers access to SNMP traffic from
operation networks. Obtained traces could then be used to analyze the usage, behavior
and interaction patterns of SNMP in real-world networks as has been the case with similar
projects, successfully dealing with anonymization of FTP traces [4] or router configuration
files [2].

15



References

[1] http://encyclopedia.laborlawtalk.com/Lexicographic_order.

[2] David A. Maltz, Jibin Zhan, Geoffrey Xie, and Hui Zhang. Structure preserving
anonymization of router configuration data. In Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement, 2004.

[3] Greg Minshall. tcpdpriv, 1996. http://ita.ee.lbl.gov/html/contrib/tcpdpriv.

html.

[4] Rouming Pang and Vern Paxson. A high-level programming environment for packet
trace anonymization and transformation. In Proceedings of the 2003 conference on
Applications, technologies, architectures, and protocols for computer communications,
2003.

[5] Jürgen Schönwälder. Characterization of SNMP MIB Modules. In 9th IFIP/IEEE
International Symposium on Integrated Network Management, Nice, May 2005.

[6] Jun Xu, Jinliang Fan, and Mostafa H. Ammar. Prefix-preserving ip address anonymiza-
tion: measurement-based security evaluation and a new cryptography-based scheme.
In Proceedings of the 10 th IEEE International Conference on Network Protocols
(ICNP’02), 2002.

[7] Jun Xu, Jinliang Fan, Mostafa H. Ammar, and Sue Moon. Crypto-pan, 2003. http:

//www.cc.gatech.edu/computing/Telecomm/cryptopan/.

[8] Tatu Ylonen. Thoughts on how to mount an attack on tcpdpriv’s “-a50” option...
http://ita.ee.lbl.gov/html/contrib/attack50/attack50.html.

16

http://encyclopedia.laborlawtalk.com/Lexicographic_order
http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html
http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html
http://www.cc.gatech.edu/computing/Telecomm/cryptopan/
http://www.cc.gatech.edu/computing/Telecomm/cryptopan/
http://ita.ee.lbl.gov/html/contrib/attack50/attack50.html

	1 Executive summary
	2 Summary
	3 Introduction
	4 Prefix-preserving IP address anonymization
	5 Prefix- and lexicographical-order-preserving IP address anonymization
	6 Security Section
	7 Implementation
	8 Conclusion

