

Introduction

IP can easily be tunneled over a plethora of network protocols at various layers, such as IP, ICMP, UDP, TCP, DNS, HTTP, SSH and many others. While a direct connection may not always be possible due to a firewall, the IP packets could be encapsulated as payload in other protocols, which would get through. However, each such encapsulation requires the setup of a different program and the user has to manually probe different encapsulations to find out which of them works in a given environment. The Magic Tunnel Daemon (mtund) consists of a daemon and plugins. Each plugin implements a different encapsulation. The daemon automagically selects a working encapsulation in each environment, does the tunneling and can failover to another encapsulation if the environment changes.

The Daemon

- written in C
- using plugins for encapsulation (*dlopen(3*))
- using *tun*(4) virtual interfaces
- using *libevent* for multiplexing

The mark FreeBSD Foundation and is used by Matúš Harvan with the permission of The FreeBSD Foundation. BSD Daemon Copyright 1988 by Marshall Kirk McKusick. All Rights Reserved.

Magic Tunnel Daemon mtund

Matúš Harvan Information Security, ETH Zürich, Switzerland

Features:

- failover between plugins
- probing and keep-alive "pings"
- detects a broken encapsulation -keeps state in firewall
- multi-user support
- -one tun(4) interface per client
- -clients need to associate with the server
- fragmentation and fragment reassembly
- **Two types of encapsulations:**
- 1. direct (TCP, UDP)
- each side can send data anytime
- 2. **polling** (ICMP echo request/reply, DNS query/reply)
- replies

Plugins

TCP plugin

- send tunneled IP packets as TCP payload in a TCP connection

- additional feature: listen on all unused TCP ports
- * sys patch TCP_LISTENALL socket option

+ UDP plugin

- send tunneled IP packets as UDP payload in a UDP connection
- additional feature: listen on all unused UDP ports
- has to be bound/connected to the right ports/addresses

• the client can send data anytime but the server can only send data in

–framing – prepend payload length before the actual payload so that the recipient knows where the tunneled packet ends within the TCP stream

* sys patch – net.inet.raw.udp_catchall sysctl allows receiving unclaimed UDP packets on a raw IP socket, a new UDP socket then

ICMP plugin

DNS plugin

- –using DNS queries and replies
- at many hotspots)

• more plugins

- -HTTP
- -SSH
- . . .
- config file format and parsing
- encryption, client authentication
- protect tunnel control traffic

- MTU probing (can use probing pings)

More information available under http://wiki.freebsd.org/mtund

-using ICMP echo request/reply pairs to pass a stateful NAT gateway -sys patch - net.inet.icmp.echo_user sysctl allows receiving ICMP echo requests on a raw IP socket

–DNS encoding and decoding taken from *iodine*

-if a DNS zone is properly delegated, connection to a working nameserver is sufficient and direct Internet connectivity is not needed (this is the case

Missing Features

-tunneled traffic can use IPSec on the tun(4) interface • ICMP plugin probing and non-polling mode -instead of ICMP echo request/reply pairs a "direct" mode of operation could be used if the firewall allows it -use a different ICMP type so that kernel patching would not be required -different strategies for ICMP echo ID and SEQ fields • DNS plugin should act as the UDP plugin if non-DNS traffic arrives • port to other BSDs, linux,... (currently only for FreeBSD)