
Cognitive Robotics

Seminar report

Matúš Harvan

Spring Semester 2006

Abstract

Cognitive robotics is concerned with enabling robots to perform higher level cog-
nitive functions sucha as perception, reasoning and action in complex, unknown and
changing environments. The goal of the RoboCup Rescue robots in the Robotics
lab is one day to be used in search and rescue operations after disasters, i.e. after
a building collapses the robots should be able to explore the collapsed building and
find victims inside. In particular, robots should be capable of exploring and mapping
an unknown environment, i.e. a crash site and look for victims. Several subtasks
needed for such autonomous runs of these robots have been investigated and dealt
with. A basic occupancy grid has been implemented as a starting point for mapping
an unknown environment surrounding the robot. The usage of a gyro for odometry
has been investigated, where double integration of the acceleration (as measured by
the gyro) would be used to determine displacement from starting point. Finally, a
laser scanner has been used to detect the largest opening among obstacles surround-
ing the robot. This would aid the robot in an autonomous exploration of unknown
environments. The capability of the scanner to detect obstacles of various materials
has been investigated while evaluating the implementation.

1 Introduction

Cognitive robotics is concerned with endowing robots with higher level cognitive functions,
enabling them to perceive, reason and act in complex, unknown and changing environ-
ments, understanding the high level features of an environment.

The particular application scenario of cognitive robotics will be the RoboCup Rescue
robots in the Robotics Lab at International University Bremen. The goal of the robots is
to be used in search and rescue operations after disasters, i.e. after a building collapses the
robots should be able to explore it and find victims inside. In particular, robots should
be capable of exploring and mapping an unknown environment, i.e. a crash site. Within
this crash site robots have to locate (human) victims, determine their health status and
report this information including the victim position within the environment. Ideally, the
robots should operate autonomously, without the need for a human operator. Such auton-
omy includes several several areas, such as exploring an unknown (and maybe changing)
environment, creating a map of the explored environment, localizing the robot itself within
the map, detecting and avoiding obstacles in the environment and detecting victims and
checking their status. Within the scope of cognitive robotics, focus will be on higher level
tasks such as mapping the environment and localing the robot itself within the environment
rather than low level sensor operation or motor activation.

Specific subtasks of the autonomous exploration and mapping of the environment have
been been examined and dealt with in more detail. For simplicity the environment was
assumed to be only 2-dimensional. Usage of an occupancy grid has been considered as
a way of creating a map of the environment. Several options to produce an occupancy
grid have been considered and a basic algorithm has been implemented. The advantage of
occupancy grids is that they can take into account uncertainties in the scanner data and
a changing environment. The occupancy grids are discussed in more detail in section 2.
So far, shaft encoders on robot wheels have been used for odometry. These, however are
inaccurate due to slip of the wheels on the surface. Given that the robot turns by making
the wheels slip, this method get especially inaccurate for turns. Therefore, the usage of
a gyro mounted on the robot has been considered. Double integrated acceleration values
measured by the gyro could be combined with the information from shaft encoders on
the wheels to get more accurate odometry. The feasibility of this approach approach and
results from experiments are described in more detail in section 3. Using information from
a laser scanner to look for “holes” between obstacles around the robot as a basic way of
autonomous environment exploration has been investigated and implemented. Details can
be found in section 4.

2 Occupancy Grid

Occupancy grids are used to express which parts of the world around a robot (grid cells)
are free and which are occupied. For that probabilities are used instead of a binary yes or
no. Unknown cells are marked with values between free and occupied (usually exactly in

2

the middle between free and occupied) [7].
The occupancy grid is updated using information from sensors. The simplest way is

to overwrite the old value of the corresponding cell with new reading from the sensor.
However, better results can be obtained by using the Bayes Theorem and taking into
account also previous value of the cell and sensor models when updating the occupancy
grid [10]. To use Bayes Theorem, the sensor measurements are assumed to be independent.
This approach copes better with sensor inaccuracies. Furthermore, readings from several
sensors can be fused together to increase accuracy of the occupancy grid. [9] describes
how data from sonar and stereo have been integrated. Occupancy grids can also be used
for collision avoidance [4, 5]. A review of certainty grids usage is presented in [12]. An
overview of the mapping methods and certainty grids as used so far by the Robotics Group
at International University Bremen can be found in [3].

In general, sensor usage can roughly be divided into:

1. localization – to determine the current pose of the robot within the map (occupancy
grid)

2. obstacle detection – to detect obstacles in the environment

Due to inaccuracies (e.g. from odometry) it is hard to determine the exact pose of
the robot. Instead of struggling for exact values probabilistic localization can be used. In
the occupancy grid framework, this can be accounted for by “blurring” older values in the
grid. The idea is that current pose of the robot is known (in the robot-centric frame) and
hence recently recorded values near the robot are accurate. However, previous positions
of the robot are becoming less accurate (due to accumulated errors) as the robot moves
and hence older values in the grid are being blurred (converging to values representing
unknown grids).

As the sensor for creating an occupancy grid a laser scanner (HOKUYO URG-04LX) mounted
on the robot has been used. The (2-dimensional) grid was based on a 2-dimensional array.
There are two methods for updating the grid:

1. sample along beam lines
Updates to grid cells are done by sampling along each beam of the scanner as shown
in Figure 1. Cells covered by the beam are marked free. The cell corresponding to
the end of the beam is marked occupied (that’s where the beam was reflected by
an obstacle). Values of cells after the end of the beam are not changed (as it is not
known what is behind the obstacle). A disadvantage of this approach is that if the
grid has finer resolution, only thin lines within the grid (corresponding to the beams)
are updated. This could be mitigated by assuming cones instead of lines for the
updates (see Figure 2).

2. consider area around robot
Instead of sampling along beam lines, one could consider only a bounding box on
the beams and construct a bounding polygon of the beams (i.e. end vertexes of the

3

Figure 1: Sample along beam lines.

Figure 2: Sample along beam lines using cones.

beams are vertexes of the polygon). Then cells inside the polygon are considered
free, cells on the sides of the polygon are considered occupied and cells outside the
polygon are not updated. This is illustrated in Figure 3. In order to check whether
a cell is inside the bounding polygon, it is sufficient to find points from closest scans
(with y-coordinate) above and below given cell and then check if the cell is inside,
outside or on the boundary of the polygon (on the line between the two scans).

For the implementation part the choice of data structures has been settled. The grid
would be represented as a 2-dimensional array of unsigned 16-bit integers. The grid itself
would be contained in a class Map. There would also be a class Robot, containing a Map

and a class Pose to determine robot’s current pose. Map would have a function for mapping
real-world coordinates to grid cell indexes. A UML diagram of the classes are shown in
Figure 4.

For updating the grid with new readings from the scanner, initially a robot-centric
local grid considering the area around robot was to be used. In a second step the local grid
would be merged into the global grid. This approach, however, has been abandoned due to
complications with using a local robot-centric grid for updates from scanner. Furthermore,
there would be inaccuracies merging the local grid with the global one. The decision was
made to do the updates directly in the global grid. The updating has been implemented
in one function of class Robot, taking readings from the scanner as an argument.

4

Figure 3: Sample whole area.

The updates of the grid with new readings from the scanner have been done by simply
overwriting previous grid cell values with new readings from the scanner. The update
algorithm could easily be changed later to use the Bayes Theorem if needed.

The implementation has been finished. It has been tested by simulating scanner values
of an obstacle all around the scanner in the range of 5 cm. The robot was moved through
the grid and the grid values have been dumped after each robot move by one cell. The
field of view and detected obstacles around the robot matched what was expected. Another
check was done by rotating the robot in one place and changing to a narrower field of view
of the scanner. This checked if the orientation and angle calculations were done correctly.
The purpose of the occupancy grid part was just to get a basic implementation working.
Afterwards, focus has been shifted to other problems and no more work has been done on
the occupancy grids.

3 Gyro

As one of the ways to do localization, the robot is using dead reckoning. For this shaft
encoders on robot wheels are used. These, however, produce inaccurate results in case
wheels of the robot slip. Given that the robot turns by rotating wheels one side at another
speed than wheels on the other side, thereby making the wheels slip (skid steering), this
method gets inaccurate rather fast. It is relatively accurate for driving straight, but the
turns are a problem. To mitigate this, the usage of a gyro mounted on the robot has been
considered. The gyro was an Xsense GyroMT-I, a 3 DOF gyro measuring orientation and
acceleration. By merging information about orientation from the gyro with information
from the encoders, accuracy of dead reckoning could be improved [1, 8, 11, 6]. This
affects errors in heading, which in turn influence the position accuracy. For merging the
information from various sensors (gyro and encoders), various forms of Kalman filters could
be used (Indirect, Extended, Unscented,. . .).

Furthermore, double integrating acceleration values from the gyro could be used for

5

Robot

+globalMap: Map*

+pose: Pose

+updateFromScanner(scanner_data:int*,number_of_beams:int): void

Map

+grid: u_int16_t**

-sizex: int

-sizey: int

+max_x: int

+max_y: int

+min_x: int

+min_y: int

+findGridCell(pose:Pose,i:int*,j:int*): void

+setGridCell(x:double,y:double,value:u_int16_t): void

+getGridCell(x:double,y:double): u_int16_t

Pose

+x: int

+y: int

+theta: int

Figure 4: Classes used for implementation.

odometry. However, using double integration has the disadvantage of quickly accumulating
errors. Furthermore, acceleration measurements are subject to fluctuations as the robot
moves over uneven ground. A successful usage of this approach, called inertial navigation
system, is described in [2]. It achieved a position drift rate of 1-8 cm/s. The conclusion
was that position estimates using accelerometers were reliable only over short periods (5-10
s) and not better than using encoders on robot wheels.

The first problem turned out to be actually getting any data out of the gyro, so the
first goal was to start reading data from the gyro. To start with, an older program written
by Andreas Pfeil was found on the robot. However, this program was written for the
driver infrastructure and hence could not be used directly. An attempt was made to delete
all code which seemed player-related or unnecessary, but then the program was no longer
getting any updates for the gyro data (i.e. it was reporting the same data all the time).
The most probable reason for this was that the original code was also using threads for
updates from the scanner and the code for starting the update thread has been removed.

Next attempt was made with sample code for the gyro downloaded from the robotics
wiki1. This code worked without any problems and was showing showing readings for both
acceleration and orientation.

The next goal was to try using the gyro for odometry. This would probably be inaccu-
rate, but still useful for short time and/or coupled with other sensors. Initially, experiments

1http://robotics.iu-bremen.de/docu/protected/XSENS/GenericDemoCode/

SoftwareDevelopment/Xbusclass/Example-Linux/

6

have been done with odometry only along x-axis to see whether using the gyro for odom-
etry would be a viable approach. Using double integration to do odometry did not work
well. The values for acceleration were constantly non-zero along x- and y-axis. This was
probably because the gyro was not in level with water and hence part of the earth gravity
was decomposed also into components along x- and y-axes, not only the z-axis. It was
considered to mitigate this problem by calculating the component of earth gravity along
x-axis from the pitch (as the gyro also reported the pitch). However, no agreement could
be reached with fellow students about how to do the calculations. As a result, the problem
was left to be tackled at a later point in time. Another alternative would have been to use
a value from the matrix representation of orientation, where one would basically take the
component of x-axis and see how it maps into the global z-axis (or the other way round) to
determine the relevant component of Earth gravity onto the gyro’s x-axis. The source code
implementing ideas discussed so far can be found in src/mt-gyro-example.1.tar.gz.

Attempts to use the gyro for odometry have been continued, initially only along the
x-axis. An agreement on determining the gravity component along x-axis was reached with
fellow students. The gravity x-axis component would be obtained by multiplying g with
the top-right value from the matrix representation of the gyro pose (the sample program
for the gyro provided this). It was agreed that the value should be either top-right or
bottom-left and the correct one was found experimentally by making the gyro face north
and then rotating it.

The sample program has been modified to also do double integration of acceleration and
remove the g-component from acceleration along x-axis. For translating the acceleration
into odometry, the following formulas have been used

ẍ = a

ẋ = a∆t + v0

x =
a∆t2

2
+ v0∆t + x0

giving

x = x0 + v0∆t +
a∆t2

2
v = v0 + a∆t

So at every update step the following was done

x← x + v∆t +
1

2
a∆t2

v ← v + a∆t

Readings of acceleration a were decreased by what was believed to be the component of g
in the direction of x-axis. This component, however, was constantly changing (oscillating),
so probably there were some non-negligible inaccuracies or instabilities within the gyro
itself.

7

Afterwards, various techniques have been tried out to get some useful odometry data
from the gyro. A description of these attempts follows. It should be noted that none of
them was particularly successful. The testing was done by moving the gyro by hand for 20
cm and checking what distance the program (implementing the currently tested technique)
has reported. These results were usually significantly off. As the acceleration was non-
zero, the speed was constantly increasing or decreasing. After a short while the error has
accumulated a large speed and there was no chance of getting any reasonable odometry as
the relatively large speed was by no means affected by a small acceleration.

The values for the gyro at rest were dumped into a file for several hundreds of readings.
Matlab was used to find the mean (5.18 · 10−5) and standard deviation (0.0080) of the
gravity component along the x-axis.

To correctly determine the gravity component along x-axis the exact value of g was
also needed, or at least the value that the sensor believed to be g. Hence, also the values
of (

√

x2 + y2 + z2) have been dumped, which should correspond to g when the gyro is at
rest. The mean of this value was around 9.83. However, repeating this procedure revealed
that the mean was changing for each run, i.e. for one run it was 9.8319, for next run it
was 9.830091. To cope with the changing values a running average of g was used to cancel
the component in x-axis direction. This, however, would be very accurate as the formula
we have used would add also other acceleration to g such as starting to move forward.
Therefore, this solution would only be useful if the robot were not moving – this is not
terribly useful if the purpose is to determine how much the robot has moved.

Nevertheless, running average of the measured g values for the last 10 measurements
was tried out, but it has not allowed for any reasonable odometry.

The next approach was to try clipping the measured x-axis acceleration to get rid of
small values (noise) with the idea that real robot movement acceleration gives higher values
than the values at which clipping was done. This did not work well either, as with the
clipping parts of the real acceleration were eliminated as well. This lead to some funny
results, such as moving by 10 cm, i.e. accelerating, moving and decelerating to stop lead to
a negative speed after stopping as parts of the “real” acceleration have been clipped away.

The source code implementing these attempts can be found in src/mt-gyro-example.2.
The conclusion from the experiments is that it is not feasible to use double integration of
acceleration (as measured by the gyro) to do odometry. The problem is that errors ac-
cumulate too fast to get any reasonable results, even for short time intervals like several
seconds.

4 Largest Opening (Gaps From Laser Scanner)

A basic form of autonomous environment exploration can be achieved by a strategy of
following the largest opening. Using information from a laser scanner one can look for
openings (or gaps) between obstacles around the robot. Then the robot can be directed
towards the largest identified opening. In this way a very basic autonomous environment
exploration could be implemented. Within the framework of the robot autonomy, this

8

approach would be used in case the other autonomy approaches get “stuck”. Then rotating
the robot is expected to “unstuck” the other autonomy functions so that they could again
take over. The task of the algorithm was only to report direction to the largest opening, but
the task of actually navigating the robot to move would be taken over by other algorithms.
From the discussion with the PhD student in the lab assigning this task, the understanding
was that openings are identified by error beams of the laser scanner, i.e. beams which are
emitted by the scanner but do not come back to the scanner in time. The understanding
was that these beams represent free space within the range of the scanner (4 m). Therefore,
a gap was defined as a sequence of consecutive error beams. Clearly, it only makes sense
to consider gaps with sufficient width for the robot to pass through the gap. Already
during the initial discussion it became clear that there were several approaches to solve
the problem and probably several of them would have to be examined in more detail.
During evaluation of the implemented solution, the capability of the laser scanner to detect
obstacles composed of various materials has been investigated.

In order to pick the largest opening, a measure of the gap width is needed. Two possible
measures have been considered.

1. distance between the obstacles forming the gap. Let l1, l2 be lengths of the beams
to the obstacles bounding the gap and φ be the angle between the beams. Then the
gap width is

√

l2
1
+ l2

2
− 2l1l2 cos(φ).

2. perpendicular projection of the above measure. Let l1, l2 be lengths of the beams
to the obstacles bounding the gap and φ be the angle between the beams. Then
the perpendicular projection of the gap width is 2 min(l1, l2)sin(φ

2
). This measure is

roughly proportional to the number of laser beams covering the gap.

The two measures are graphically illustrated in figure 5.

obstacle

robot

obstacle

(a) Measure 1 – distance between obstacles

obstacle

robot

obstacle

(b) Measure 2 – perpendicular projection of Mea-
sure 1

Figure 5: Two different measures for gap width

The implementation work has started with the scanner GUI program developed by Ivan
Delchev (src/scanner new.tar.gz). This program was capable of accessing the scanner,

9

reading data from it and displaying the beams in a semi-circle. Furthermore, error beams
were shown with a different color than the normally reflected beams. This program has
been used as a starting point for implementing the algorithm to locate the widest opening.
The largest gap was chosen using measure 1. If found, the beams corresponding to it
were marked with green color in the GUI. This allowed for an easy way to visually inspect
how the algorithm was performing. A gap has been considered a sequence of consecutive
error beams. Beams were processed sequentially from right to left. The first error beam
in a sequence was opening a gap and the last one was closing it. When closing a gap,
it’s width was calculated and if it was larger than current maximum, information about
the widest gap was updated. In this way the selection of the widest gap was done in
time linear in the number of beams. Source code of the implementation can be found in
src/scanner_new_matus_alex.tar.gz.

After some experiments it has been noticed that measure 1 might not be as suitable
as has been initially expected. The problem was that if there was a gap with a small
perpendicular projection width (measure 2), but the boundary obstacles were far apart,
i.e. one obstacle close to the robot and the other one far away, measure 1 was identifying
this gap as the largest one. This went to extreme cases such as a gap of just one beam.
However, there were several other gaps, which had the perpendicular projection of the
width larger, i.e. were covered by more laser beams. An illustration of such a case can be
found in Figure 6. In this figure (b) would seem as a better choice, but measure 1 clearly
favors (a). Due to this the algorithm was changed to use measure 2. Initially only the

robot

obstacle

obstacle

(a) bad

obstacleobstacle

robot

(b) good

Figure 6: Two gaps to consider for measure 1 – (b) seems to be a larger gap, but (a) is
found to be “wider”

number of beams was used, later on the proper formula was plugged in.
Another problem found during the implementation phase was that the laser beams

forming a gap identify a cone of free space. However, it is desired to check whether the

10

robot could move in the direction of the gap. Therefore, a rectangular area has to be
checked, part of which (close to the robot) is not covered by the free space cone. If only
the cone of free space were checked, an obstacle could possibly exist close to the robot
outside of this conical region. Hence, the rectangular region corresponding to the path of
the robot going towards the gap in question should be checked. The argument is illustrated
in figure 7. The first approach suggested was to assume that there would be no obstacle

obstacle

robot

obstacle

obstacle

(a) cone

obstacle

robot

obstacle

obstacle

(b) rectangular

Figure 7: As shown in (a) it is possible to have an obstacle close to the robot in a way that
the obstacle does not interfere with the conical free space region. Hence, the rectangular
region corresponding to the planned robot path should be checked as well.

obstacle

robot

obstacle

Figure 8: Assuming the cyan part is free, we no longer have to check the rectangular area
outside the cone.

as close to the robot as to be outside of the cone and still prevent the robot from moving
towards the gap, i.e. assume there are no obstacles in the cyan rectangle in Figure 8. The
reason is that the motion planning and other autonomy functionality would not let the
robot get so close to an obstacle. The largest opening algorithm only reports an angle to
rotate the robot to face the largest opening, but the navigation towards the opening is then
taken over by other parts of the robot software. Thess other parts would then make sure

11

not to hit any obstacles. Furthermore, the robot has also other sensors which should detect
such close obstacles. This approach, however, was soon abandoned because choosing an
opening as the largest one and then finding out the robot could not move in its direction
does not get the robot any further in exploring the environment.

The next approach was to properly check if there are no obstacles also in the rectangular
region near the robot. This checking will be referred to as corridor width checking. To

robot

obstacle

obstacle

obstacle

obstacle

d

dj

di

φi

φj

l1
l2

li lj

w

h2

h1

A2

A1

Aj

Ai

Figure 9: Corridor width calculation.

determine the corridor width w we need to find obstacles limiting it “the most”. To do this
following steps are performed (an overview of the variables can be found in Figure 9). Let
A1 be the obstacle limiting the gap from the right. Let the beam going to point A1 that
limits the gap have an angle α1 and length l1. For every beam to the right of this beam,
going to obstacle Aj, having angle αj ∈ [0, α1) and length lj, we can determine distance d
between obstacles A1, Aj and angle φj as follows:

dj =
√

l2
1
+ l2

2
− 2l1l2cos(α1 − αj)

φj = arcsin

(

lj
dj

sin(α1 − αj)

)

The beam corresponding to the obstacle limiting the corridor “the most” will be the
one having minimum angle with the beam going to A1. This will be φ1 = minj(φj). The
right part of the corridor can be determined as

h1 = l1sinφ1

Similar algorithm can be used to find the beam limiting the corridor on the left side.
Let A2 be the left bound of the gap, corresponding to the beam with angle α2. Consider

12

all the beams to the left of this beam. These beams would have angle αi ∈ (α2, αmax] and
length li. Similar formulas as for the previous case can be used to determine φi. To find
the beam corresponding to the obstacle limiting the corridor on the left, we need to find
the beam with minimum φi. This would be φ2 = mini(φi) and h2 = l2sinφ2.

The corridor widht can the be determined from h1 and h2

w =
√

h2

1
+ h2

2
− 2h1h2cosβ

with β = π + α2 − α1 − φ1 − φ2. If the corridor width is less than the width of the robot,
then the gap in question would not be considered as a candidate for the widest gap.

The above described algorithm has been implemented in the current widest gap de-
tection. Using a #define, it can be enabled or disabled at compile time. Once a gap is
identified (i.e. the closing beam is found), the corridor width is checked. Compared to the
previous version, the additional corridor width checking implies looping over possibly all
the beams for each gap. This worsens the run time to be worst case quadratic in the num-
ber of beams. However, usually there are not that many gaps and the number of beams
from the laser scanner is constant. While evaluating the implementation, the run time did
not seem to be in any way a limiting factor.

The implementation has been tested by moving cardboard boxes around the scanner
and visually inspecting the GUI output of the program. The identified largest opening was
marked green among the beams, so the the visual inspection was very convenient. During
the testing, several shortcomings have been found and fixed. One particular problem
which became obvious during testing was that only beams with angle −π/2 ≤ α ≤ π/2 are
compatible with the formulas. In other words, it does not make sense to check obstacles
behind the robot for corridor width calculations. Furthermore, if a beam is longer than l1 or
l2, it also does not make sense to consider it. Another bug was that the variable for storing
maximum gap width was not initialized in the beginning, causing erroneous results like
not identifying something which clearly would have been considered the widest gap after
a visual inspection. At some point of time the scanner device could no longer be accessed.
After some debugging the problem turned out to be that the device node representing the
scanner (/dev/ttyACM0) changed from a devicce node to a regular file. Fortunately, there
were similar device nodes still left intact (i.e. /dev/ttyACM1) to determine the type, major
and minor numbers. The file was deleted and a proper device node was created by hand
using the commands

cd /dev

rm ttyACM0

mknod ttyACM0 c 166 0

Afterwards, the scanner worked again. The problem with the device node was probably
caused by a new installation or misconfiguration of udev, a framework for virtual /dev file
system on Linux systems.

There was already another implementation of a widest opening selection algorithm on
the robot by Ivan Delchev and Stefan Markov. A comparison with this implementation was

13

considered. However, due to differences in the algorithm, a discussion with the authors was
initiated. Their algorithm completely ignores error beams (beams going to infinity) and
divides the remaining beams to clusters where beams in a cluster have difference in length
only within a certain margin. This leads to clusters roughly corresponding to obstacles
detected by the scanner. The clusters are sorted comparing the sum of lengths of their
beams. This approximates the free space area between the robot and the obstacle. The
cluster with the largest area is then chosen as the widest opening. During the discussion
the real meaning of error beams (beams going to infinity) was discussed. It became clear
that they do not necessarily represent free space up to maximum scanner range. They are
simply beams which have not been reflected back. As many materials absorb the beams,
there could be obstacles not detected by the scanner. Therefore, it should be assumed to
have no information about the area covered by error beams. This contradicts the basic
assumption behind the design of our algorithm. Hence the algorithm could probably not
be used on the robot. On the other hand, completely ignoring error beams would fail in
certain scenarios, e.g. a simple room with an open door and no other way out. As there
would be nothing to reflect the beams in the empty door frame, the robot would not detect
the open door as an opening. It was considered to completely abandon the algorithm and
work on another task. However, the prof said the algorithm should be tested with more
materials and determine how feasible it is to use error beams.

To determine how well the laser scanner could detect various materials, several tests
have been conducted by using obstacles from various materials and checking how they
would be detected by the scanner. It turned out that shiny, reflexive materials and metals
tend to produce a large amount of error beams. A paper notebook was detected without
any problems. However, the effect of a reflexive surface could well be observed by holding
a CD in front of the paper notebook. The CD not only produced a huge amount of error
beams, but it also has distorted the image of the obstacle on the scanner. The CD was
aligned with the paper notebook, but on the scanner it seemed as if the CD were 0.5m
in front of the notebook. Screenshots from the scanner program are shown Figure 10.
The red beams are detected obstacles while yellow beams are error beams. House keys
(produced from metal) seem to produce error beams as well, even when put in a protective
leather case. The heaters in the lab seemed to cause error beams as well. A black plastic
box with rather shiny surface has been found to cause a number of error beams as well.
For the shiny surfaces the distortion of beams (causing beams to show different distance)
or production of error beams seemed to depend on the angle of the surface to the laser
beams. Human body seemed to be detected by the scanner without problems. From the
experiments it seems some materials cannot be well detected with the laser scanner and
hence the feasibility of largest opening detection based on error beams is questionable.

The tests gave an incentive to redesign the algorithm developed so far. The definition
of a gap has been changed from the sequence of error beams to a sequence of beams with
length within a certain range. The algorithm was changed to look for gaps in iterations.
The limit for considering a beam as belonging to a gap would dynamically change from
iteration to iteration. The algorithm starts with a rather high limit and tries to find a
gap wide enough for the robot to pass through it. If no such gap is found, the limit for

14

(a) Paper notebook (b) Paper notebook with CD in front of it

Figure 10: Screenshot of the scanner program showing scanner reading distortions caused
by reflexive surfaces. Red beams are normal beams while yellow ones are error beams. In
(a) a paper notebook is put in front of the scanner. It can be observed as an obstacle right
in front of the scanner. In (b) a CD is held in front of the notebook. Besides producing
significant amount of error beams, the CD also appears to be put further away from the
notebook while in reality it is right in front of it.

considering a beam as part of a gap is decreased and the search is repeated. The particular
scanner used had a range of 4m. The initial range started at the maximum scanner range
(4m) and if no suitable gap was found, it was decreased by 0.5 m. Using this approach,
the algorithm no longer had to rely on error beams only. Furthermore, the algorithm has
been redesigned to support two policies for dealing with error beams. Using a #define

one can choose at compile time whether error beams should be considered as representing
free space or whether they should be avoided and no gap could contain an error beam.
The latter approach is a more defensive one, where only areas would be considered about
which the scanner is reasonably sure they are free. However, if this approach failed to find
a gap, it would be possible to switch to the former approach. Switching during run time
(i.e. for cases like a room with one open door to exit the room) has not been implemented.
Basically. it would require changing the #ifdef’s to if’s and implementing the switching
from one policy to another and then back. In the evaluation, where cardboard boxes have
been moved around the scanner, the new algorithm seemed to identify gaps properly. Both
policies for dealing with error beams have been tested. Two sample scenarios are shown
in Figure 11.

As an additional optimization, a pseudo-inertia approach has been implemented. The
algorithm has been biased to prefer gaps in front of it rather than turn to the side or
backwards. This should prevent cases where the robot would in an autonomous run get
stuck moving always between two gaps but on the way from one gap to the other always

15

(a) Dynamic limit avoiding error beams. (b) Dynamic limit ignoring error beams.

Figure 11: Screenshot of the scanner program showing a comparison of the algorithm
when error beams are avoided, i.e. a gap is not allowed to contain error beams (a) and
error beams are considered to represent free space (b). The latter approach is a bit riskier
while the former one might miss certain gaps. In (b) it can be seen that the dynamic limit
for considering a beam as part of a gap has been decreased to 1m.

change its preference. The bias has been implemented by multiplying the width of the
gap with the triple power of cosine of the angle to the middle of the gap. The power was
used to make the peak of the cosine function sharp enough for biasing gaps in front of the
robot and has been found empirically. Furthermore, the angle had to be multiplied by 3

4

to make the weight zero at the edges of the scanner field of view (±120◦). The formula for
the weight of a gap at angle α then was cos3(3

4
α).

5 Conclusion

Several subtasks needed for autonomous runs of the RoboCup Rescue robots have been
investigated and dealt with in more detail. A basic occupancy grid has been implemented
as a starting point for mapping unknown environment surrounding the robot. The imple-
mentation could be further upgraded using Bayes Theorem for updating the grid and fusing
together readings from various sensors. This could significantly increase the accuracy of
the grid.

The usage of a gyro for odometry has been investigated, where double integration
of the acceleration (as measured by the gyro) would be used to determine displacement
from starting point. It has been concluded that this is not a viable approach. Errors in
acceleration measurements accumulated very fast and using them for odometry was not
possible even for short time periods. Several filtering and smoothing techniques have been
tested, but could not mitigate the large accumulating errors.

16

Finally, a laser scanner has been used to detect the largest opening among obstacles
surrounding the robot. This would aid the robot in autonomous exploration of unknown
environment. Initial work has been done on the incorrect assumption that error beams
represent free space until the maximum scanner range. Later on an algorithm was devel-
oped that was looking for openings considering beams in iterations, where in each iteration
shorter and shorter beams are considered. As an additional check, the width of the corridor
leading to the opening is checked to be compliant with the robot dimensions. The algo-
rithm implements two policies for dealing with error beams. They are either considered
to represent free space or are avoided and no gap is allowed to contain an error beam.
The algorithm has been evaluated by simulating obstacles using cardboard boxes. While
evaluating the algorithm, the laser scanner has been found to perform very badly with
reflective surfaces and metal materials.

17

References

[1] F. Azizi and N. Houshangi. Mobile robot position detrmination using data from gyro
and odometry. In Proceedings of the Canadian Conference on Electrical and Computer
Engineering, volume 2, pages 719 – 722, May 2004.

[2] B. Barshan and H. F. Durrant-Whyte. Inertial navigation systems for mobile robots.
IEEE Transactions on Robotics and Automation, 11:328 – 342, June 1995.

[3] A. Birk and S. Carpin. Rescue robotics - a crucial milestone on the road to autonomous
systems. Advanced Robotics Journal, 20(5), 2006.

[4] J. Borenstein and Y. Koren. Real-time obstacle avoidance for fast mobile robots
in cluttered environments. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 572–577, 1990.

[5] J. Borenstein and Y. Koren. The vector field histogram - fast obstacle avoidance for
mobile robots. IEEE Transactions on Robotics and Automation, 7(3):278–288, 1991.

[6] H. Chung, L. Ojeda, and J. Borenstein. Sensor fusion for mobile robot dead-reckoning
with a precision-calibrated fiber optic gyroscope. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation ICRA 2001, volume 4, pages 3588
– 3593, 2001.

[7] A. Elfes. Using occupancy grids for mobile robot perception and navigation. Computer,
22(6):46–57, 1989.

[8] K. Komoriya and E. Oyama. Position estimation of a mobile robot using optical fiber
gyroscope (ofg). In Proceedings of the IEEE/RSJ/GI International Conference on
Intelligent Robots and Systems, volume 1, pages 143 – 149, Sep. 1994.

[9] L. Matthies and A. Elfes. Integration of sonar and stereo range data using a grid-
based representation. In Proceedings of the 1988 IEEE International Conference on
Robotics and Automation, volume 2, pages 727 – 733, Apr. 1988.

[10] H. Moravec. Sensor fusion in certainty grids for mobile robots. AI Mag., 9(2):61–74,
1988.

[11] K. Park, H. Chung, J. Choi, and J. G. Lee. Dead reckoning navigation for an au-
tonomous mobile robot using a differential encoder and a gyroscope. In Proceedings of
the 8th International Conference on Advanced Robotics, pages 441 – 446, July 1997.

[12] T. Wang and J. Yang. Certainty grids method in robot perception and navigation. In
Proceedings of the 1995 IEEE International Symposium on Intelligent Control, pages
539 – 544, Aug. 1995.

18

